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1.	  	  	  In	  a	  nutshell

	
 The development of heuristics implemented in robust application softwares has made large 
phylogeny inference a key step in most comparative studies involving molecular sequences. The 
choice of a phylogeny inference software is not only dictated by the raw performance (speed) of the 
algorithm(s) and of its (their) implementation, the availability of complex substitution models, and 
the accuracy of the resulting trees, but also by a combination of parameters pertaining to the ease-
of-use and the availability of specific functionalities.
	
 Here, we present the manual of MetaPIGA, a robust implementation of several stochastic 
heuristics for large phylogeny inference (under maximum likelihood), including a Random-Restart 
Hill Climbing, a Stochastic Simulated Annealing (SSA) algorithm, a classical Genetic Algorithm 
(GA), and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution 
models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA handles 
nucleic-acid and protein datasets as well as morphological (presence/absence) data. The benefits of 
the metaGA ([1] Lemmon & Milinkovitch 2002; PNAS, 99: 10516-10521) are as follows: (i) it 
resolves the major problem inherent to classical Genetic Algorithms (i.e., the need to choose 
between strong selection, hence, speed, and weak selection, hence, accuracy) by maintaining high 
inter-population variation even under strong intra-population selection, and (ii) it generates branch 
support values that approximate posterior probabilities.
	
 The software MetaPIGA also implements:
✓ Simple dataset quality control (testing for identical sequences and excessively ambiguous or 

excessively divergent sequences);
✓ Automated trimming of poorly aligned regions using the trimAl algorithm [2];
✓ The Likelihood Ratio Test, Akaike Information Criterion, and Bayesian Information Criterion for 

the easy selection of nucleotide and amino-acid substitution models that best fit the data;
✓ Ancestral-state reconstruction of all nodes in the tree;
✓ Codon models for the analysis of protein-coding nucleotide sequences;
✓ Faster Likelihood computation on Nvidia graphics cards;
✓ Automated stopping rules based on convergence statistics.
MetaPIGA provides high customization of heuristics’ and models’ parameters, manual batch file 
and command line processing. However, it also offers an extensive and ergonomic graphical user 
interface and functionalities assisting the user for dataset quality testing, parameters setting, 
generating and running batch files, following run progress, and manipulating result trees.
	
 MetaPIGA uses standard formats for data sets and trees, is platform independent, runs in 32- 
and 64-bits systems, and takes advantage of multiprocessor and/or multicore computers. Note 
that MetaPIGA allows the use of the  XtremWeb-CH infrastructure for distribution of multiple jobs 
on a Grid. 

	
 MetaPIGA is freely available to academics at www.metapiga.org and www.lanevol.org 
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2.	  	  	  Background

Phylogeny inference allows, among others, detecting orthology/paralogy relationships among 
gene-family members (e.g., [3-6]), estimating divergence times and evolutionary rates (e.g., [7-9]), 
reconstructing ancestral sequences (e.g., [10-14]), identifying molecular characters constrained by 
purifying selection or which experienced positive selection (e.g., [15]), uncovering hidden 
biodiversity (e.g., [16]), and mapping the evolution of morphological, physiological, 
epidemiological, biogeographical, and even behavioral characters [17, 18]. Molecular phylogeny 
inference is now a mature science, and an important part of the maturation process pertained to the 
realization (since the late 1990’s) that the quest for the Holy Grail of THE absolute best tree should 
be abandoned for a much more meaningful goal: the inference of clades and trees robustness. Still, 
this objective remained intractable in practice because of (a) the NP-hard nature of optimality-
criterion-based phylogeny inference (i.e., no algorithm can solve it in polynomial time; [19, 20]) 
and (b) the large computing-time requirements when using complex substitution models (and rate 
heterogeneity across sites) in the framework of what has been identified as the probable most robust 
optimality criterion: Maximum Likelihood (ML; [21-23]; See Appendix 3 for an introduction to 
ML). Today large phylogeny inference is incorporated, across biological disciplines, as an essential 
step in most comparative studies involving nucleotide or protein sequences. This has been made 
possible thanks to both theoretical and practical developments.

First, one key advance that made large phylogeny inference tractable is the implementation in 
this field of stochastic heuristics with inter-step optimization, i.e., a family of approaches that 
existed for decades in physics and computer science and explore multidimensional solution spaces 
in a much more efficient manner than the older intra-step optimization hill-climbing methods. 
Indeed, in the latter, one prime parameter (typically, the topology of the tree) is modified and all 
other parameters are optimized before the new solution is evaluated whereas, in stochastic 
heuristics, all free parameters are optimized while the search proceeds. Inter-step optimization 
methods include Markov Chain Monte Carlo (MCMC) approximations of the Bayesian approach 
[24, 25], stochastic simulated annealing [26], and genetic algorithms [1, 27-30]. The efficiency of 
stochastic heuristics is quite counterintuitive but can be explained by several factors: (a) poorer 
solutions are accepted with a non-null probability (contrary to hill-climbing that strictly restricts 
moves toward better likelihood values) such that valleys in likelihood space can eventually be 
crossed; and (b), parameters are not over-optimized (e.g., starting and intermediate trees are 
generally largely sub-optimal, hence, optimizing model parameters on these trees is a clear example 
of over-fitting). In addition, we think that avoiding over-optimization at every topology evaluation 
generates a flatter likelihood-space shape, such that valleys are more easily crossed and local optima 
more easily escaped. This suggestion however requires further investigation.

Second, several stochastic methods have been incorporated into robust application softwares. 
The importance of that point should not be underestimated. For example, the success of Bayesian 
methods is probably due as much to its incorporation into robust and efficient software (e.g., 
MrBayes; [31]) as to the theoretical appeal of generating marginal posterior probabilities [25]. The 
software RaxML [32], enjoys deserved popularity because it is one of the fastest ML phylogeny 
inference programs available to date (despite that it does not incorporate stochastic methods) thanks 
to the implementation of approximations to rate heterogeneity across sites and smart computer 
science tricks speeding up likelihood computation: optimized parallel code and ‘Subtree Equality 
Vectors’ (i.e., the extension of character compression to the subtree level). Similarly, highly efficient 
parallel code has recently been implemented for the evaluation of phylogenies on graphics 
processing units (GPUs), resulting in 10 to 100-fold speed increase over an optimized CPU-based 
computation [33]. This efficient use of new hardware, existing stochastic heuristics (in this case, an 
MCMC approach in a Bayesian framework), and smart code parallelization for efficient harnessing 
of the hundreds of GPU processing cores allowed the authors to use a 60-state codon model on a 

MetaPIGA 3.0 manual    p4



dataset of 62 complete mitochondrial genomes. Note that MetaPIGA now implements GPU 
computation (since version 3.0b0).

The availability of multiple excellent softwares implementing different robust heuristics is 
clearly an asset for the end user: reliable results might be identified because they remain stable 
across softwares and methods. However, many users chose one single main software for their 
analyses, and this choice is sometimes dictated by availability of functionalities of importance (e.g., 
batch analyses, GTR nucleotide substitution model [34] and rate heterogeneity [35-37], possibility 
to partition data) but that do not pertain to the performances of the specific heuristic implemented. 
Finally, given that the need to infer large trees is critical in multiple biological disciplines, the non-
specialist can be baffled by the large number of available heuristics, parameters, and softwares, such 
that the most user-friendly tools are sometimes preferred even if more robust or more efficient (but 
less user-friendly) softwares are available. 

There is therefore a challenge to supply softwares that are both easy to use for the non-
specialist, provide flexibility for the specialist, and allow fast and robust inference for both. We 
hope MetaPIGA version 3 provides a solution to this conundrum.

3.	  	  	  The	  metaGA	  algorithm	  &	  MetaPIGA

The Metapopulation Genetic Algorithm (MetaGA; [1]) is an evolutionary computation 
heuristic in which several populations of trees exchange topological information which is used to 
guide the Genetic Algorithm (GA) operators for much faster convergence. Despite the fact that the 
metaGA had initially been implemented in a simple and unoptimized software (metaPIGA-v1) 
together with simple nucleotide substitution models, an approximate rate heterogeneity method, and 
only a low number of functionalities, it has been suggested as one of the most efficient heuristics 
under the ML criterion. Furthermore, multiple metaGA searches provide an estimate of the posterior 
probability distribution of trees [1]. 
	
 The metaGA resolves the major question inherent to classical  GA approaches: should 
one use a soft or a stringent selection scheme? Indeed, strong selection produces good solu-
tions in a short computing time but tend to generate sub-optimal solutions around local op-
tima. Conversely, mild selection schemes considerably improve the probability to escape local 
optima and find better solutions, but greatly increase computing time. As the metaGA involves 
several parallel searches, initial  inter-population variation can be very high (especially if ran-
dom or pseudo-random starting trees are used), and somewhat maintained during the search, 
even under extreme intra-population selection.
	
 Although the metaGA has been shown to perform very well [1, 38, 39] it initially did not im-
plement complex substitution models, discrete Gamma rate heterogeneity, and the possibility to par-
tition data. Here, we present MetaPIGA version 3, a program in which we performed such an im-
plementation, both for nucleotide and protein data, together with a hill climbing, a classical Genetic 
Algorithm (GA), and a Stochastic Simulated Annealing (SSA) algorithm. MetaPIGA version 3 also 
implements dataset quality control, automated trimming of poorly aligned regions, criteria (Likeli-
hood Ratio Test, Akaike Information Criterion, and Bayesian Information Criterion) for the easy 
selection of nucleotide and amino-acid substitution models that best fit the data, ancestral-state re-
construction of nodes, Codon models for the analysis of protein-coding nucleotide sequences, faster 
Likelihood computation on Nvidia graphics cards, and automated stopping rules based on conver-
gence statistics. MetaPIGA can also be parallelized on a Grid of computers.
	
 MetaPIGA gives access both to high parameterization, as well as to an ergonomic interface 
and functionalities assisting the user for sound inference of large phylogenetic trees.
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4.	  	  	  The	  software	  MetaPIGA

4.1.  Availability
The software MetaPIGA is freely  available to academics at www.metapiga.org , and is avail-

able for Windows, Mac OSX, and Linux. Note that, each time you launch MetaPIGA, it checks for 
the availability of updates. MetaPIGA will always request your authorisation to perform such an 
update. This manual is also available in the MetaPIGA help menu.

Disclaimer. MetaPIGA is  provided without warranty of any kind. The authors  and their institutions do not  warrant  guarantee, or 
make any representation regarding the use or the results of the program or manual in terms of their correctness, reliability, or other-
wise. In no case will the authors and their respective institutions be liable for any direct, special, indirect, incidental, consequential, 
or other damages arising from using the metaGA and/or any version of MetaPIGA and/or this manual  and/or any supporting material. 
MetaPIGA is freely available only to Academics. If you are working for a commercial company and are planning to use MetaPIGA, 
please, contact michel.milinkovitch -at- unige.ch

4.2.  Recommended citations
The Consensus Pruning (CP) and the Metapopulation Genetic Algorithm (metaGA) were 

originally described in the first reference below, whereas the version 2 of MetaPIGA (the software 
implementing the MetaGA and other heuristics) is described in the second. Hence, we would be 
grateful if you could cite these two references when publishing results produced with MetaPIGA 
version 3.

✓ Lemmon A.R. & M. C. Milinkovitch
The metapopulation genetic algorithm: an efficient solution for the problem of large phylogeny
estimation
Proceedings of the National Academy of Sciences (PNAS), USA, 99: 10516-10521 (2002)

✓ Helaers R. & M. C. Milinkovitch
MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic 
algorithm and other stochastic heuristics
BMC Bioinformatics 2010, 11: 379

4.3.  CPU, GPU, Operating Systems, and memory requirements
CPU & Operating Systems. As optimality-criterion phylogeny inference in general, and ML 

inference in particular, is a computer intensive endeavour, fast CPUs are always preferable, even 
when using powerful heuristics such as MC3 or the metaGA. Using a ranid frog dataset (provided 
with the software as one of the example datasets) of 64 taxa X 1976 nucleotides each, a typical 
metaGA run (4 populations of 4 individuals, and default parameter values) will take approximately 
2 minutes to complete under a simple model (Jukes-Cantor) and about  20 minutes under a complex 
model (GTR + gamma distributed rate heterogeneity) on a single core of a 2.27 GHz Intel Xeon 
processor (you can easily  reduce running time by distributing replicates on several cores, see be-
low). Hence, when using datasets of over 100 taxa and when performing replicates (to estimate pos-
terior probabilities of clades; see below), you should expect runs to last several hours. If you are 
experienced in the use of MrBayes [31], take as a rule of thumb that a thorough analysis using the 
MetaGA requires a running time similar to that of using MrBayes with the same dataset.

MetaPIGA is written in Java 1.6 such that the single code runs on 32 and 64-bits platforms 
under MacOS X, Linux, and Windows. We use the Java Multi-Threading technology to take advan-
tage of multiprocessor and/or multicore computers, such that some tasks can be run in parallel. As 
replicates are independent, they are particularly  prone to parallelization: different replicates can be 
assigned to any number of different  processor cores (typically 4 - 12 in most 2013 machines). In 
addition, the metaGA heuristic itself is well suited to parallel implementation because many proc-
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esses (mutations, selection, and likelihood computation) are independent across populations. Hence, 
different metaGA populations can be distributed to different processor cores. Parallelization of 
metaGA populations can be combined with parallelization of replicates (e.g., 16 cores allow run-
ning simultaneously 4 metaGA replicates with 4 populations treated simultaneously at each repli-
cate). Note that distributing different replicates to different cores is more efficient (in terms of com-
putation speed-up) than distributing different populations to different cores1. Hence, parallelization 
of populations usually  increases running speed by  about 0.3n whereas parallelization of replicates 
increases running speed by almost n (where n= the number of CPU cores you assigned to 
MetaPIGA).

 Computing on GPU (Graphics cards). Analyses of protein or codon datasets are particu-
larly long because of the high number of possible state substitutions (20x20 for amino-acid data; 
64x64 for Codon data). In such cases, performance can be substantially increased if likelihood 
computation is performed on GPUs (Graphics processing units), also called ‘Graphics cards’. These 
are devices that provide fine-grained parallelization. MetaPIGA version 3 can run on  CUDA-
capable graphics cards from Nvidia Corporation. The graphics card’s compute capability has to be 
at least 2.0. The list of CUDA-capable graphics cards can be found on the following web site: 
https://developer.nvidia.com/cuda-gpus. Note that the performances of GPUs are low for nucleotide 
sequence data, substantial for protein sequence data, and spectacular for codon sequence data.

In order to make use of the available supported graphics card, appropriate CUDA drivers have to be installed. The drivers 
and the installation instructions can be found on the following web site: 
https://developer.nvidia.com/cuda-toolkit-42-archive. Be sure to install the 4.2 Toolkit version and the drivers that come 
with that version of the CUDA Toolkit. MetaPIGA v.3 hasn’t been tested on the newer versions of the CUDA Toolkit.
If you’re using a Linux distribution with graphics card, prior to launching MetaPIGA, you must set the environment vari-
able that points to the CUDA library, like this:

export LD_PRELOAD={path to the CUDA library}:$LD_PRELOAD
Where {path to the CUDA library} points to the ‘libcuda.so’ CUDA library. 
For example on one of our machines this variable setting looks like this: 
export LD_PRELOAD=/usr/lib/nvidia-current/libcuda.so:$LD_PRELOAD

	  
For best performances, the graphics card must have enough built-in memory (see the ‘memory’ 
sections below).

The Grid. If you are a user of the XtremWeb-CH infrastructure, you can use a Grid to per-
form your data analysis with coarse grained parallelization. This means that different replicates are 
computed on the different worker computers on the Grid. If you have 100 computers on your grid, 
your analysis will be about 100 times faster.

In order to use the grid, first you have to have an account on the XWCH. After you make an account, you have to ask the 
XtremWeb-CH support  to connect a MetaPIGA module to your account. When the MetaPIGA module is ready, you have to 
upload the MetaPIGA binaries to your MetaPIGA module. Provided with MetaPIGA is a small program that  uploads these 
binaries to the grid. This program is  available in the MetaPIGA base folder on your computer in the subfolder 
‘XWCH_bin_uploader’. You will  have to provide the ‘MetaPIGA 3.jar’ that is in the base MetaPIGA folder, your user 
identification number, the grid server address, and the MetaPIGA module ID. These informations can be found in your 
XtremWeb-CH interface. If you can’t  find them, consult with the XtremWeb-CH project people. Note that, every  time 
MetaPIGA is updated, you will have to upload the binaries  again in order to have the latest version of the MetaPIGA on the 
grid. For the user documentation, please, refer to the following web site:

http://www.xtremwebch.net/mediawiki/index.php/How_use

Memory. Computing and storing the likelihood of large trees require large amounts of 
Random-Access Memory (RAM). Note that 32-bits systems can allocate a maximum of ~2Gb of 
memory to the Java Virtual Machine (JVM), whereas 64-bits systems are limited only  by the 
amount of memory installed on the computer (the theoretical limit is 16 billions gigabytes). The 
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equation below allows calculating the number of Giga-bytes of free RAM  (i.e., RAM that must be 
available when your OS is running) you will need for using MetaPIGA:

 RAM (Gb) =
Tr ⋅ N ⋅ D ⋅C ⋅ S ⋅ Pr ⋅ 4

10243
  

where Tr is the number of trees used at each generation, N is the number of nodes in the tree (=2T-1, 
where T is the number of taxa), D is the number of data patterns2, C is the number of discrete cate-
gories of the gamma distribution (typically, 4), and S is the number of possible character states 
(S=4, S=20, and S=64 for DNA, protein, and Codon characters, respectively). Pr is the number of 
CPU cores assigned to the parallelization of replicates: doubling the number of CPU cores assigned 
to different replicates doubles the speed of the search but also doubles the amount of required 
RAM. 

The number of trees (Tr) used at each generation by MetaPIGA depends on the heuristic chosen:
✓ Tr = 3 for ‘Hill Climbing’ (HC) and for ‘Simulated Annealing’ (SA);
✓ Tr = I+1 for the ‘Genetic Algorithm’ (GA) under ‘Improve’, ‘Replacement’,  and ‘Keep the best’ selection 

schemes;
✓ Tr = I*2+1 for the ‘Genetic Algorithm’ (GA) under ‘Tournament’, and ‘Rank’ selection schemes;
✓ Tr = P*I+1 for the ‘Metapopulation Genetic Algorithm’ (MetaGA) under ‘Improve’, ‘Replacement’, and ‘Keep 

the best’ selection schemes;
✓ Tr = (P+1)(I+1) for the ‘Metapopulation Genetic Algorithm’ (MetaGA) under ‘Tournament’, and ‘Rank’ selec-

tion schemes with one CPU core;
✓ Tr = (2P)(I+1) for the ‘Metapopulation Genetic Algorithm’ (MetaGA) under ‘Tournament’, and ‘Rank’ selection 

schemes with more than one CPU core;
P is the number of populations and I is the number of individuals per populations.

For example, using a computer with 4 CPU cores, and using the metaGA (with ‘Improve’ Selection) 
with 4 populations of 4 individuals, and rate heterogeneity with 4 Gamma-rate categories on a DNA 
dataset of 120 taxa and 4000 nucleotides (hence, about 2500 data patterns, although that number 
can vary, depending on each specific dataset), will require about:

a. 2.4 Gb of RAM for a single core assigned to each replicate but 4 cores assigned to 4 simul-
taneous replicates;

b. 1.2 Gb of RAM  for 2 cores assigned to each replicate and 2 cores assigned to 2 simultaneous 
replicates.

Note that option a. will be significantly faster than option b. Also note that:
✓ The amount of RAM  computed above is a lower bound as the storage of the dataset itself can 

take a few hundreds Mb;
✓ An estimate of the amount of RAM  necessary  for your analysis is indicated in the parameter 

summary  panel of the main window (Fig. 2) as well as in the lower-left corner of the ‘Analysis 
settings’ window (Fig. 9 to 18), on the basis of the parameters you have chosen in that same 
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2 A data pattern is an aligned column with a specific combination of states. One pattern can occur several times within 
the same dataset. For example, the character columns 1, 8 & 9 below are identical, hence, their likelihoods are identical 
and must be computed only once (but used three times for computing the joint likelihood). Similarly, characters 3 & 7 
are identical. The example dataset below exhibits 9 characters but only 5 patterns. The number of data patterns is indi-
cated in the ‘MetaPIGA data matrix’ tab (see Fig. 3)

 Character-->1 2 3 4 5 6 7 8 9                  Pattern --> 1 2 3 4 5
Taxon1       A G T G C C T A A                  Taxon1      A G T G C
Taxon2       A G T G C C T A A                  Taxon2      A G T G C
Taxon3       T T T G C C T T T -> Compress ->   Taxon3      T T T G C
Taxon4       T T T G C C T T T                  Taxon4      T T T G C
Taxon5       T - T G C C T T T                  Taxon5      T - T G C
 Pattern --> 1 2 3 4 5 5 3 1 1                  Weight -->  3 1 2 1 2



window. In both windows, the estimate turns red if you exceed the amount of memory you allo-
cated to MetaPIGA.

As indicated in Figure 1a, you can choose the amount of RAM assigned to MetaPIGA in the menu: 
‘Tools’ ➙  ‘Memory Settings’). You will be prompted by  the program to do so if you experience an 
out-of-memory error during the use of MetaPIGA. The amounts of memory assigned, used, and 
available can be found in the menu ‘Help’ ➙ ‘System informations’ (Fig. 1b).

  
Fig. 1: The metaPIGA (a) Memory Settings  and (b) System Information windows

 Graphics card memory. For best performances, the graphics card must have enough built-in 
memory. To calculate the minimum amount of memory in megabytes, use the following formula:

RAMopt

GPU (Mb) =
12 ⋅C ⋅ D ⋅ S + 8 ⋅C ⋅ D + 16 ⋅C ⋅ S 2 + 8 ⋅C + 12 ⋅ D + 16 ⋅ S 2 + 16 ⋅ S

10242
.

Where D is the number of data patterns (see above), C is the number of discrete categories of the 
gamma distribution (typically, 4), and S is the number of possible character states (S=4, S=20, and 
S=64 for DNA, protein, and codon sequences respectively).
If the amount of available memory is less than that computed above, MetaPIGA will have to split 
the data into pieces before sending it to the GPU, which in turn degrades the performances of the 
GPU. To calculate the minimum of built-in GPU memory needed, use the following formula:

RAM min

GPU (Mb) =
8 ⋅C + 12 ⋅ D + 8 ⋅C ⋅ D + 16 ⋅ S + 384 ⋅C ⋅ S + 16 ⋅ S 2 + 16 ⋅C ⋅ S 2

10242
.
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5.	  	  	  Using	  MetaPIGA

5.1.  Summary
	
 MetaPIGA uses standard formats: reading and writing datasets in Nexus format [40] and trees 
in Newick format. Note that aligned datasets in Fasta format can also be imported in MetaPIGA. All 
search settings can be saved in a metaPIGA block incorporated into the Nexus file, allowing easy 
management and runs on distant servers. A Nexus file without a metaPIGA block will be correctly 
interpreted by MetaPIGA and will run with default parameters (but it will skip other programs 
blocks such as ‘Paup’ or ‘Assumptions’ blocks). Note that the command “Endblock”  often used in 
Paup data files is not a standard Nexus command and will not be recognized by MetaPIGA (please, 
use the standard Nexus command “END”  instead). The minimum requirements are a DATA block 
(defining the datatype, the number of taxa and the number of characters), including a MATRIX com-
mand (i.e., with the sequence data; if the matrix is in interleave form, please, indicate it in the DATA 
block) with each sequence beginning with the sequence name separated from the sequence itself by 
at least one space. Standard ambiguity characters are accepted (see below) and missing data (de-
fined by the ‘MISSING’ command; default is ‘?’) are automatically converted to ‘N’ (nucleotide se-
quences) or ‘X’ (amino-acid sequences). Gaps (defined by the ‘GAP’ command; default is ‘-’) can be 
removed (with the corresponding character in other taxa) or treated as ‘N’ (see Section 5.3). 

Example of Nexus file with nucleotide data.
#NEXUS
BEGIN DATA;
	
 DIMENSIONS NTAX=5 NCHAR=12;
	
 FORMAT DATATYPE=DNA interleave
	
 MISSING=? GAP=- ;
MATRIX
mysequence_T1  AGTGCCTGATTG
mysequence_T2  AGTGCCTGATCG
mysequence_T3  TTTGCCTG---G
mysequence_T4  TTTGCCTAATCG
mysequence_T5  T-TGCCTAATCG
;
END;

The standard ambiguity code for DNA sequences.

M = A or C
V = A or C or G (not T)
R = A or G
H = A or C or T (not G)
W = A or T
D = A or G or T (not C)
S = C or G
B = C or G or T (not A)
N = A or C or G or T

Example of Nexus file with protein data.
#NEXUS
BEGIN DATA;
	
 DIMENSIONS NTAX=5 NCHAR=12;
	
 FORMAT DATATYPE=PROTEIN interleave
	
 MISSING=? GAP=- ;
MATRIX
mysequence_S1  QSGT
mysequence_S2  RSGT
mysequence_S3  P-GK
mysequence_S4  RLGK
mysequence_S5  RLG-
;
END;

The standard ambiguity code for PROTEIN se-
quences.

B = N or D 
Z = Q or E 
J = I or L 
X = any amino-acid

	
 MetaPIGA can be run in command line (cf. end of ‘Section 5.2’, then jump directly to Sec-
tions 5.7 and 5.8 as well as Appendix 2), but it also offers an extensive graphical user interface 
(GUI) for access to:

✓ Dataset setting (Fig. 4-9) : defining and managing charsets; including/excluding taxa, characters, 
and charsets; defining and managing dataset partitions; changing nucleotide sequences to codon 
sequences and vice versa; 
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✓ Analysis settings (Fig. 10-18): choosing and customizing heuristics; defining substitution models 
and their parameters; choosing starting-tree options; controlling operators; defining stop criteria 
and replicates, managing multi-core processing. 

All settings are associated with an interactive ‘mouse-over’ help system such that, if you are an 
experienced phylogeneticist, you probably don’t need this manual much ;). 
	
 MetaPIGA implements simple dataset quality controls (testing for the presence of identical 
sequences and for excessively ambiguous or excessively divergent sequences) and automated trim-
ming of poorly aligned regions using the trimAl algorithm [2]. MetaPIGA also implements statisti-
cal methods for selecting substitution models that best fits the data ([41]; and refs therein): the 
Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion. 
	
 The MetaPIGA GUI provides a detailed run window showing graphs specific to the corre-
sponding heuristic. For example,, for a metaGA search with replicates, the run window shows: (i) 
the current best likelihood progression of each population and (ii) the current topology, posterior 
probability values, and average branch lengths of the consensus tree. 
	
 Batch files are particularly useful for running sequentially a single data set under multiple dif-
ferent settings or several datasets with the same settings. MetaPIGA supports the use of batch files 
that can be either written manually (see Section 5.8) or generated using tools available in the GUI 
(see Section 5.7): datasets and their settings can be duplicated, settings can be “stamped” from one 
dataset to another, and multiple combinations of datasets and settings can be saved in a batch file 
that can be run either in the GUI (with various graphical information on search progress) or using 
command line.
	
 Input and result trees are manipulated in Newick format, but visualized graphically in the 
GUI, and can be exported for other programs. MetaPIGA also integrates a Tree Viewer that allows 
viewing, re-rooting, and printing trees as well as computing the likelihood of any tree (under any 
available substitution model) and optimizing its model parameters. Five other tools are imple-
mented: a Tree Generator (using the starting tree settings), an Ancestral State Reconstruction 
viewer (associated with the Tree Viewer), a Consensus Builder (using user-trees and/or trees saved 
in the ‘Tree Viewer’), a tool for computing Pairwise Distances, and a Memory Settings tool defin-
ing the maximum amount of memory allocated to the program. See section 5.9 for details.

5.2.  Launching MetaPIGA & opening a file
	
5.2.1.  Loading a file 
Double-clicking a ‘.nex’ file (on Windows and Mac OS X) launches MetaPIGA and opens the 
Nexus file. If it does not, launch MetaPIGA by double-clicking the application icon and open your 
NEXUS (or FASTA) file by clicking on the ‘Load Nexus file’ button  (Figs. 2 & 3) or by select-
ing in the menu: ‘File’ ➙ ‘Load a Data File (Nexus or Fasta format)’. Several Nexus files can be 
loaded sequentially using the Load Nexus File button/command but multiple files can also be 
dragged and dropped from the OS navigator to the left panel of the MetaPIGA main window (Fig. 
2). The upper-right and lower-right panels of the main window indicate the parameters and the data 
matrix, respectively, obtained from the corresponding Nexus/Fasta file (Fig. 2). The entry window 
gives access to a second tab (arrow in Fig. 2) that shows the compressed data matrix and indicates 
the number of data patterns and base frequencies. 
5.2.2.  Data quality control & alignment trimming 
Hitting the ‘scissor’ button ( Fig. 2) in the center of the main window will successively launch 
quality tests for:
✓ The presence of excessively ambiguous sequences: sequences with >40% ambiguities  (gaps and 

N/X) will be detected and  will be proposed to be automatically removed.
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✓ The presence of redundant sequences: groups of identical sequences will be detected and only 
one sequence (with the lowest number of ambiguities) will be kept for each such group3.

✓ The presence of excessively divergent sequences: if sequences generating large uncorrected 
pairwise distances (85% for proteins, 65% for nucleotide data, and 45% for standard binary data) 
are detected, a warning is given, suggesting to remove these sequences and to subsequently rea-
lign the dataset. MetaPIGA does not perform alignment, so you’ll have to realign your sequences 
using an alignment software such as ClustalW or CodonCode Aligner.

✓ Automated trimming of poorly aligned regions using the trimAl algorithm [2]: excessively 
gapped and/or divergent positions are put in a charset of excluded characters (but they can be 
easily re-included in the ‘Dataset settings’, see section 5.3).

Each of these 4 tests is also separately accessible in the 'dataset' menu.
	
 The trimAl algorithm has not yet been implemented for codon sequences in the MetaPIGA 
version 3.0.

Fig. 2: The MetaPIGA main window with three loaded datasets and the ‘ranoidea_1b’ dataset selected. The arrows 
indicate the memory required for running that dataset (under the current settings), the central button for data quality 
control & alignment trimming, and the second tab giving access to the compressed dataset, number of data patterns, 
and base frequencies.
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groups of identical sequences (seq.1+2+3 and seq.4+5). After running the test, MetaPIGA keeps, within each group, 
only the sequences with the lowest number of ambiguities (sequences 1 and 4).

Sequence1   A G T G C C N G A!
Sequence2   A G Y G C C T R A!! ! Sequence1   A G T G C C N G A
Sequence3   A N T N C - T G A!   --->! Sequence4   T T T G C C T - T
Sequence4   T T T G C C T - T
Sequence5   T - - G C C T A T 



The icons in the upper-left cor-
ner of the window (Fig. 3) are 
shortcuts to the main com-
mands from the ‘File’, 
‘Search’, ‘Batch’, and ‘Tools’ 
menus. Most of these functions 
are self-explanatory and are 
associated with an interactive 
‘mouse-over’ help system. We 
will however discuss below the 
major functionalities. Most 
commands can be called using 
a short-cut of type ‘Ctrl/Cmd+letter’ (e.g., ‘Ctrl/Cmd+L’ for opening a Nexus or Fasta file).

NOTE: COMMAND LINE LAUNCH. It is particularly useful to launch MetaPIGA in command line if you want to 
send jobs to a distant server. You must use the ‘mp_console’ executable (and not ‘MetaPIGA’). Simply type the com-
mand “mp_console” with the following arguments:

✓ [noupdate] : MetaPIGA will not check the MetaPIGA download server for an update;
✓ [nogui] : MetaPIGA will run without graphical interface (but textual progress), executing all files given in argument.
✓ [width=] : set the console width (default = 80). Necessary for progress bar display without GUI. 
✓ [silent] Launches MetaPIGA without any GUI or text progress. 
✓ [aFilename] : The Nexus/Fasta file that will be opened by MetaPIGA and executed if [nogui] is set. If several file-

names are given, they will be run sequentially as a batch. 
For example, to run sequentially two nexus files ‘file1.nex’ and ‘file2.nex’ withtout GUI under Windows, type: 
“mp_console.exe noupdate nogui file1.nex file2.nex”
Refer to ‘Section 5.8’ on how building batch files manually, and to ‘Appendix 2’ for the full list of MetaPIGA com-
mands that can be incorporated in Nexus files.

5.3.  [D] Dataset Settings
5.3.1 Overview
	
 The dataset settings are accessed by clicking on the button  or by selecting in the menu: 
‘Dataset’ ➙ ‘Dataset settings’. This window allows to:

✓ define and manage charsets;
✓ include/exclude taxa, characters, and charsets;
✓ define and manage dataset partitions;
✓ define outgroup sequences;
✓ define a range of Codons inside a nucleotide sequence.

This window is divided into two tabs. The first tab (Dataset) handles charsets, partitions, outgroups, 
and excluded taxa. The second (Codons) allows defining Codon characters in nucleotide sequences.
	
 The corresponding window for the ‘ranoidea_1b.nex’ file is shown below (Fig. 4). The 7 out-
group taxa and the 10 charsets were predefined (hence, recognized by the program) in the nexus file 
using a metaPIGA block as highlighted in green below. See Appendix 2 for the full list of 
MetaPIGA commands.
#NEXUS
BEGIN DATA;
!DIMENSIONS NTAX=111 NCHAR=3679;
!FORMAT DATATYPE=DNA interleave MISSING=? GAP=- ;
MATRIX
The data matrix is here in interleaved format
;
END;
BEGIN METAPIGA;

Fig. 3: The MetaPIGA main functionalities icons. These functionalities 
(and others) are also available through the ‘File’, ‘Dataset’, ‘Search’, 
‘Batch’, and ‘Tools’ menus. Between brackets: shortcut command letters.
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charset name=RAG1 set{1-555};
charset name=rhod1 set{556-870};
charset name=rhod4 set{871-1045};
charset name=Tyr set{1046-1579};
charset name=12V16 set{1580-3080};
charset name=16S set{3081-3679};
charset name=RAG_AmbigAlign set{67-84};
charset name=Tyr_AmbigAlign set{1211-1228};
charset name=12V16_Ambigalign set{1610-1615 1671-1684 1721-1762 1784-1801 1817-1867
! 1892-1900 1911-1915 1953-1999 2048-2055 2070-2086 2107-2116 2128-2199 2208-2219
! 2237-2262 2287-2304 2308 2324-2332 2349-2352 2363-2370 2378-2390 2411 2431-2454
! 2567-2611 2673-2700 2722-2728 2742-2831 2864-2884 2900-2988 3022-3080};
charset name=16S_AmbigAlign set{3090-3103 3128-3136 3149-3158 3318-3398 3438-3507 
! 3513-3527 3649-3679};
outgroup {1004NesTho 0986DenAur 1052HylAre 0987PhrVen 1006CerOrn 1082LepMel! 1037Telsp.};

end;

All commands can be performed with the GUI (instead of using commands in the Nexus file) as de-
scribed below.

5.3.2 The ‘Dataset’ tab
	
 Use the >> and << but-
tons to (i) transfer taxa in and 
out of the outgroup, (ii) 
exclude/include taxa,  (iii) 
consider/disregard pre-defined 
charsets as partitions, and (iv) 
include/exclude character sets 
from the analysis. Character 
sets (‘charsets’) can be defined 
and managed using the inter-
face (see below). In Fig 4, one 
taxon and four charsets were 
excluded manually. The 
‘Charset viewer’ button allows 
selecting and visualizing any of 
the charsets (highlighted in the 
full dataset). Clicking on the 
‘Define new charset’ button 
opens a window for selecting characters to include in the new charset. Multiple selections can be 
performed with the mouse (and shift/ctrl/cmd keys depending on your OS) or a range selection tool.

 
Fig. 5: The selection tool for defining new character sets. Select the characters to be included in the charset and click 

Fig. 4: The ‘Dataset settings’ window.
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In the first example (Fig. 5), a set of 9+4+7 characters have first been selected with the mouse, then 
added to the charset under construction by using the ‘Add selection’ button (red arrow in Fig. 5). 
That button can be used multiple times to sequentially add different sets of characters to your new 
charset. Once a selection has been added, its colour is changed to avoid any ambiguity. Once click-
ing the ‘SAVE’ button, you will have to supply a name (here, we used ‘MYCHARSET’) for the new 
charset and it will appear in the list of available charsets (Fig. 7).
	
 Note that a charset can also be 
selected using the range selection tool 
as in this second example (Fig.6) 
where nucleotides between position 1 
and 300 have been selected every 
three positions. This allows for exam-
ple to easily define 1st, 2nd, and 3d po-
sitions in a protein-coding sequence. 
The mouse selection tool (Fig. 5) and 
the range-selection tool (Fig. 6) can 
be used in combination. If your data-
set is exclusively made of in-frame 
protein-coding nucleotide sequences, 
quick definition of first, second, and 
third positions can be performed using 
the ad-hoc ‘Define pos 1,2,3’ button in 
the ‘Dataset settings’ (Fig. 4). 
	
 Charsets can then be excluded/
included from the analysis or 
considered/disregarded for data parti-
tioning. In the example in Fig. 7, we 
have 7 taxa in the outgroup, 1 ex-
cluded taxon, 11 charsets of which 4 
are excluded (in the present case, 
these are ambiguously aligned posi-
tions for different genes, hence, it was 
chosen to remove them from the 
analysis), and 3 partitions: ‘16S’, 
‘MY_CHARSET’, All other non-excluded 
characters (automatically grouped into 
a virtual charset named “REMAIN-
ING”)4. 
	

Gaps. The user can choose to remove, 
before the analysis is performed, ei-
ther all columns with at least one gap, 
or at least one gap or one ‘N’ (‘A’ or 
‘C’ or ‘G’ or ‘T’).

Fig. 6: Defining a character set with the range-selection tool.

Fig. 7: The ‘Dataset’ window after defining the new charset 
(‘MY_CHARSET’) and partitioning of the data.
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5.3.3 The ‘Codons’ tab
	
 The codon tab consists of a codon range viewer and two buttons that are used for codon range 
definition. Codons are indicated with black letters on a light green background. The remaining of 
the dataset is colored inversely 
(Fig. 8).  Pressing the ‘Make 
codons’ button will open the 
codon maker window where 
you can define (i) the range of 
the coding sequence and (ii) 
the genetic code you wish to 
use (i.e., The Universal Code, 
the Vertebrate Mitochondrial 
Code, etc., see below). The 
range of coding sequences can 
be defined by manually picking 
the first position in the dataset 
and pressing the ‘Set as first po-
sition’ button in the ‘Pick posi-
tion’ tool in the upper left corner 
of the window (Fig. 9, highlight 
a). Similarly, pick the last posi-
tion in the dataset and press the 
‘Set as last position’ button. Al-
ternatively, define the range by 
entering the indexes of the first 
and the last positions in the top 
middle part of the window (Fig. 
9, highlight b). Note that the 
first and last positions must de-
fine a range corresponding to a 
multiple of 3 nucleotides. If this 
is not the case,, the codon maker will trim the range to the closest smaller third nucleotide position. 
Also, note that if some of the codons are either stop codons or ambiguous codons, the codon maker 
will exclude the corresponding codons and a warning will pop up. Important: The nucleotides out-
side of the defined range of codons will be ignored during subsequent analyses. If you have charsets 
defined before the translation to the codons, these charset will be available only if they are compati-
ble with the codon range. These incompatible charsets will become available again as soon as you 
revert to the nucleotide character mode (see below). If you are saving a codon range to a nexus file, 
the incompatible charsets will not be saved. 
The genetic codes (for codon translation) available in the drop-down menu (Fig. 9c) are:
✓ The Universal Code;
✓ The Ciliate, Dasycladacean and Hexamita Nuclear Code;
✓ The Echinoderm and Flatworm Mitochondrial Code;
✓ The Euplotid Nuclear Code;
✓ The Invertebrate Mitochondrial Code;

Fig. 8: The ‘Codons’ tab after defining the codon range within the 
sequence. The Codon range is marked with the green background.

Fig. 9: The codon maker. Tools for defining codon range (a and b), the 
drop-down menu for selecting a DNA code (c), and the range of 
nucleotides selected as codons (d, in purple) are indicated.
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✓ the Mold, Protozoan, Coelenterate Mitochondrial & The Mycoplasma/Spiroplasma Code;
✓ The Vertebrate Mitochondrial Code.
For additional information on genetic codes, please check:  http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi.

Once you have defined the codon range and the genetic code, press the ‘Save’ button and proceed to 
defining your Analysis Settings (section 5.4 below).

Revert to nucleotides. To revert defined codons back into nucleotide characters, please press the 
‘Revert to nucleotides’ button (Fig. 8). If some of your charsets became unavailable during codon 
definitions, they will re-appear in the list of charsets.

5.3.4 Exiting the Settings Window
Once outgroup sequences, charsets, partitions, and excluded sequences and charsets have been de-
fined (and, potentially, the range of codons), and the ‘OK’ button has been hit, the main (entry) 
window is updated (Fig. 10): the upper-right window lists the new settings and the lower-right win-
dow indicates the excluded characters and excluded taxa in red, and the various partitions using a 
color-coded font background. Switching to another dataset in the left window and modifying the 
settings for that dataset does not affect the settings associates to the other datasets.

Note: A dataset can be saved as a Nexus file with both excluded taxa and excluded charset deleted from the 
DATA matrix. To do this, use the menu 'File > Save modified dataset to Nexus'.

Fig. 10: The MetaPIGA entry window updated after defining the settings.
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5.4.  [A] Analysis Settings

The analysis settings are accessed by clicking on the button  or by selecting in the menu: 
‘Search’ ➙ ‘Analysis settings’. The Settings window includes 5 tabs to switch among the corre-
sponding parameter controls relevant to: ‘Heuristic’, ‘Evaluation Criterion’, ‘Starting tree(s)’, 
‘Operators’, and ‘Miscellaneous’. The user can switch from on tab to another and confirm ALL 
changes by clicking on the ‘OK’ button in ANY of the tabs.

Note that the analysis settings window always indicates in the lower left corner (blue frame in Fig. 11) the 
amount of memory necessary for running the analysis given the settings so far selected. When the amount of 
memory exceeds that allocated to MetaPIGA, the corresponding text turns red. To alleviate the problem, use 
‘Tools’ ➙ ‘Memory Settings’ (Fig. 1) to increase the memory allocated to MetaPIGA.

5.4.1.  The ‘Heuristic’ tab 
We implemented four heuristics in MetaPIGA: a hill climbing algorithm, a Stochastic Simulated 
Annealing algorithm (SSA; [26, 42]), a classical Genetic Algorithm (GA; [27-29]), and the meta-
population Genetic Algorithm based on the Consensus Pruning principle (metaGA; [1]), all avail-
able in the Heuristic tab (Fig. 11). 

The Hill Climbing (HC) algorithms 
The ‘Stochastic HC’ algorithm generates a new solution tree at each step (using available operators) 
and accepts it only if its likelihood is better than the current solution. HC algorithms are fast but 
tend to generate solutions trapped in local optima and are therefore highly dependent on the starting 
tree localization in 
tree space as well 
as on the (un-
known) tree space 
topography. 
Hence, the user 
can choose to per-
form ‘Random-
restart hill climb-
ing’ i.e., an algo-
rithm that itera-
tively performs N 
hill climbings, 
each time with a 
different initial 
tree. Among the N 
solution trees, 
only the best is 
kept. The user can fix the number of restarts (20 by default). 

Figure 11 also illustrates the ‘mouse-over’ help system of MetaPIGA: an explanatory note appears when mov-
ing the mouse cursor over the corresponding field, parameter, or radio-button, etc. In figure 11, the mouse cur-
sor is over the ‘Random-restart Hill Climbing’ radio button.

The Stochastic Simulated Annealing algorithm (SSA)
The SSA algorithm uses statistical mechanics principles to solve combinatorial optimization prob-
lems [42]; i.e., it mimics the process of minimal energy annealing in solids. The first attempt to use 
this approach for the evolutionary tree problem was introduced in 1985 by Lundy [43], and its use 
for ML phylogeny inference was further developed in 2001 by Salter and Pearl [26]. SSA starts 
with an initial state (the starting tree) and randomly perturbs that solution (using available tree op-

Fig. 11: The ‘Heuristic’ window with the ‘Hill Climbing’ heuristic selected and the 
corresponding mouse-over help text. The blue frame highlights the amount of memory 
required for running the analysis given the settings so far selected.
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erators). If the new state is better (lower energy, better likelihood), it is kept as the new current 
state; if the new state is worse (higher energy, worse likelihood), it is accepted as the current state 
with the probability eΔE /T , where ∆E is the negative difference in energy (here, the difference of 
likelihood) between the two states, and T is the so-called ‘temperature’ of the system. If T is low-
ered slowly enough, the algorithm is guaranteed to find the optimal solution, but if the temperature 
is lowered too slowly, the time to find the optimal solution can exceed that of an exact search. The 
obvious asset of the algorithm is its ability to momentarily accept suboptimal solutions, allowing it 
to escape local optima whereas its obvious drawback is the difficulty to define the shape and speed 
of the ‘cooling schedule’ (i.e., the rate of the decrease in T). Efficient schedules highly depend on 
the dataset. The efficiency of the algorithm is unknown and optimization of its parameters has never 
been performed. Before this optimization analysis (in progress) is finalized, the SSA is provided as 
is for allowing users to explore its utility. The parameters available in MetaPIGA 3 for the SSA are 
described in Appendix 2.

The Genetic Algorithm (GA)
The GA is an evolutionary computation approach that implements a set of operators mimicking 
processes of biological evolution such as mutation, recombination, selection, and reproduction (e.g.,  
[44]). After an initial step of generating a population of trees, the individuals (specific trees with 
their model parameters) within that population are (i) subjected to mutation (a stochastic alteration 
of topology, branch lengths or model parameters) and/or recombination, and (ii) allowed to repro-
duce with a probability that is a 
function of their relative fitness 
value (here, their likelihood). 
Because selection preferen-
tially retains changes that im-
prove the likelihood, the mean 
score of the population im-
proves across generations. 
However, because sub-optimal 
solutions can survive in the 
population (with probabilities 
that depend on the selection 
scheme), the GA allows, in 
principle, escaping local op-
tima. In MetaPIGA, we implemented 5 alternative selection schemes (Fig. 12, see [1]):	

✓ ‘Rank’: individuals are assigned a probability of leaving an offspring (i.e., a copy of themselves) as a function of 

their position in a list in which they are ranked by their score. The probability for the ith individual of leaving an 
offspring to the next generation is equal to:

 2
n(n +1)

(n − i +1)

✓ ‘Tournament’: two individuals are drawn randomly from the population of I individuals and one offspring is 
produced from the individual with the higher score. Both trees are then placed back into the mating population 
and the whole process is repeated until I offspring have been generated. This is the default selection scheme 
when using the GA.

✓ ‘Replacement’: two individuals are drawn randomly from the population of I individuals and two copies of the 
better individual are returned to the mating pool (parents are discarded). The process is repeated sI times, where s 
is the selection strength. The offspring population is generated as a copy of the post-selection parent population.

✓ ‘Improve’: only those individuals that have improved (in comparison to their likelihood at the previous genera-
tion)  are allowed to produce an offspring. Each individual that fails this test is discarded and replaced by a copy 
of the current best individual.

✓ ‘Keep the Best’: only the best individual (i.e., with highest likelihood) is kept and all other individuals are re-
placed by a copy of the best individual.

Fig. 12: The ‘Heuristic’ window with ‘Genetic Algorithm’ selected.
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All selection regimes (except ‘Improve’ and ‘Keep the best’) tolerate the maintenance of poor trees 
in the evolving populations, an effect which allows escaping from local optima but increases search 
time (see below how the metaGA resolves that problem).
	
 We also implement one recombination scheme where each sub-optimal individual has a 
probability (determined by the user) to recombine with a better individual. Recombination is per-
formed by exchanging subtrees defined by one (if any) of the identical taxa partitions in the two pa-
rental trees (i.e., one internal branch that defines subtrees including the same taxa but with poten-
tially different sub-topologies). A recombination can be viewed as a large number of simultaneous 
topological mutations.
	
 Beside the selection scheme and the possibility to perform intra-population recombinations, 
the major parameter in the GA is the population size (set by the user).

The metapopulation Genetic Algorithm (metaGA)
This approach relies on the coexistence of P interacting popu-
lations [1] of I individuals each (P and I defined by the user): 
the populations are not fully independent as they cooperate in 
the search for optimal solutions. Within each population, a 
classical GA is performed: trees are subjected to mutation 
events, evaluation, and selection (5 alternative selection 
schemes are available as in the GA above). However, all topo-
logical operators are guided through inter-population compari-
sons defined and controlled by ‘Consensus Pruning’ (CP; [1]): 
topological consensus among trees across populations defines 
the probability with which different portions of each tree are 
subjected to topological mutations (Fig. 13). These compari-
sons allow the dynamic differentiation between internal 
branches that are likely correct (hence, that should be changed 
with low probability) and those that are likely incorrect (hence, 
that should be modified with high probability). 
Although CP allows for many 
alternative inter-population 
communication procedures, we 
implemented (Fig. 14) the two 
that we identified as the most 
useful: 
✓ ‘Strict CP’: internal 

branches shared by all trees 
across all populations can-
not be affected by topologi-
cal mutations, all other in-
ternal branches are uncon-
strained.

✓ ‘Stochastic CP’ (default): 
topological mutations affect-
ing a given branch are re-
jected with a probability 
proportional to the percent-
age of trees across all popu-
lations that agree on that branch. 

The default selection method for the MetaGA is ‘Improve’ (see above). This scheme greatly re-
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Fig. 13: The principle of CP. Before 
a tree is mutated, its topology is 
compared with those of the best trees 
from other populations; the 
consensus branches (bold red) define 
the partitions that can (green arrows) 
and cannot (red arrows) be affected 
by topological mutations; i.e., any 
operation moving a taxon across a 
consensus branch is prohibited.

Fig. 14: The ‘Heuristic’ window with the ‘metaPopulation Genetic 
Algorithm’ selected.
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duces the intra-population variability after each selection step but local optima are avoided thanks 
to ‘Consensus Pruning’. In other words, the metaGA resolves the major problem inherent to 
classical Genetic Algorithms by maintaining high (inter-population) variation even under 
strong (intra-population) selection.
	
 As constraining entirely an internal branch from being affected by topological mutations nec-
essarily increases the likelihood to be trapped in a local optimum, a tolerance parameter t (defined 
to 5% by the user in Fig. 14) is implemented, allowing any internal branch to be affected with a 
probability t even if the corresponding branch is shared by all trees. The user of MetaPIGA has the 
choice between a ‘blind’ and a ‘supervised’ procedure for handling constrained partitions (Fig. 14). 
In the former, a topological mutation that affects a constrained branch is simply aborted and the tree 
is left unchanged, whereas in the latter, topological operators exclusively target branches in a pool 
of acceptable (unconstrained) candidates. The ‘supervised’ procedure is used as default because 
preliminary analyses suggest that it allows trees to converge faster to higher likelihoods.
	
 The MetaGA allows for two, non-mutually exclusive, recombination flavors: ‘intra-
population recombination’ (lower-left field in Fig. 15) where each sub-optimal individual at each 
generation has a probability (instead of being mutated) to recombine with a better individual from 
that population (as in the GA above), and ‘inter-population hybridization’ (lower-right field in Fig. 
14) where, at each generation, there is a probability (defined by the user) that all sub-optimal indi-
viduals from one random population, instead of being mutated, are recombined with one individual 
from another population; sub-optimal individuals from other populations experience the normal mu-
tation procedure.
	
 As CP provides frequencies of internal branches shared among trees across populations, it 
also indicates if the populations converge towards a stable set of solutions, i.e., towards a consensus 
with stable branch frequencies. Hence, CP provides a stopping rule not available to other heuristics: 
the user can choose to stop the search when a series of successive mean relative error (MRE) values 
remains below a threshold defined by the user.  To increase independence among samples, MRE are 
computed every n>1 (i.e., non-successive) generations. The user defines n, as well as for how many 
samples the MRE must remain below the specified threshold before the search stops. See Section 
5.4.5 (The ‘Miscellaneous’ tab) for details.

5.4.2.  The ‘Evaluation criterion’ tab 
Setting ML Models
This window allows defining substitution models and their parameters (Fig. 15). Trees are estimated 
in MetaPIGA with the Maximum Likelihood criterion (ML) using one of 5 nucleotide substitution 
models for DNA sequences, one of 11 amino-acid substitution models, or  one of two codon mod-
els.  The implemented nucleotide substitution models are ([3] and refs therein): ‘Jukes Cantor’ 
(JC), Kimura’s 2 parameters’ (K2P), ‘Hasegawa-Kishino-Yano 1985’ (HKY85), ‘Tamura-Nei 
1993’ (TN93), and ‘General Time Reversible (GTR)’. The available amino-acid substitution mod-
els are: the ‘Poisson’ and ‘GTR20’ models (extensions of, respectively, the JC and GTR models to 
the 20 by 20 substitution matrix of protein sequences), and 9 empirical models for mitochondrial, 
chloroplastic, and nuclear Protein sequences: ‘MtMam’, ‘MtRev’, ‘RtRev’, ‘CpRev’, ‘BLOS-
SUM62’, ‘VT’, ‘Dayhoff’, ‘JTT’, and ‘WAG’. The implemented codon substitution models are GY  
and ECM (Empirical Codon Model) [45, 46]. For the empirical protein and codon models, state 
frequencies can be set to the empirical values used by the authors who designed the corresponding 
model. Alternatively, state frequencies can be set to those observed in the dataset under analysis. 
Analyses can be performed with Rate Heterogeneity among sites using either a discrete ‘Gamma 
distribution of rates’ (γ-distr) [35, 36] or a ‘Proportion of Invariant Sites’ (Pinv) [37], or both (γ-
distr + Pinv). All parameters of the model (transition/transversion ratio or components of the rate 
matrix, the shape parameter of the γ-distr, and Pinv) can be set by the user or estimated from a NJ 
tree (using the ‘Estimate starting parameters’ button, blue frame, Fig. 15). 
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Fig. 15: The ML model window for DNA (top panel) and Protein (middle panel) datasets. The purple arrow 
indicates the  drop-down menu for selecting the character set for which the settings are being defined: all charsets 
must be analyzed with the same single model (K2P and WAG models are selected in the examples shown), but the 
parameter values of the chosen model (e.g., the transition:transversion ratio for K2P or the estimated aa frequencies 
for WAG) can be different for each partition. Lower panel: When using the GTR20 model (i.e., the general-time-
reversible model extended to the 20x20 aa substitution rate matrix), the 190 rate parameters can be optimized during 
the search (i.e., if the RPM operator is selected), but the starting values can be set to the values of any of the 
empirical models (WAG, JTT, ...) by selecting the model in the drop-down menu (red arrow 1), and hitting the ‘Fill 
R matrix’ button (red arrow 2).
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Note: for nucleotide substitution models, the ‘transition-transversion ratio’ (Ti/Tv) is the parameter called 
kappa, i.e., the ratio between the rate of Ti and the rate of Tv. Because there are twice as many possible trans-
versions (A↔T; A↔C; G↔T; G↔C) as possible transitions (A↔G; T↔C), the kappa parameter does not 
equate to the ratio ‘frequency of Ti / frequency of Tv’. For example, under the JC model, kappa=1 but ‘FreqTi/
freqTv’= 0.5. For the codon substitution models kappa = ‘freqTi/freqTv’.
Note: Model parameter values can be estimated from the NJ tree using the ‘Estimate starting parameters’ but-
ton (blue frame, Fig. 15). However, if you stop the estimation before it completes, parameter values will not be 
re-set to the original values but to the values obtained by the optimization algorithm right before it was 
stopped.

Automated choice of best Model (LRT, AIC, BIC)
One difficulty in ML phylogeny inference is to choose the “right”  substitution model: too-simple a 
model will fit the data poorly and can lead to erroneous inference, whereas too-complex a model 
will run more slowly and over-fit the data (i.e., too many parameters in relation to the data will gen-
erate an increased variance for all parameters ... the model will describe noise in addition to the 
data). The softwares MODELTEST  and PROTTEST (http://darwin.uvigo.es) implement statistical 
methods for selecting the model that best fits the data ([41]; and refs therein). MetaPIGA makes the 
procedure easier as it implements the Likelihood Ratio Test, the Akaike Information Criterion, and 
the Bayesian Information Criterion and performs parameter optimization automatically: simply 
choose your preferred model testing method (red frames in Fig. 15). For example, running the 
Akaike Information Criterion test on the ‘ranoidea_1b.nex’ file will generate the results shown in 
Figure 16: MetaPIGA proposes to use the GTR model with gamma-rate heterogeneity but no pro-
portion of invariant sites. Accepting this proposition will set this model in MetaPIGA as well as the 
starting parameter values (here, rate parameters and gamma distribution shape parameter) to those 
evaluated during the test. As the various models are tested in parallel on all the CPU cores of your 
machine, MetaPIGA will warn you if not enough memory is available, a problem that can easily be 
alleviated by reducing the number of cores allocated to the task (blue oval in Fig. 16). 

Fig. 16: Running the Model Testing (here, with the AIC criterion).

MetaPIGA 3.0 manual    p23

http://darwin.uvigo.es/software/modeltest.html
http://darwin.uvigo.es/software/modeltest.html


Note: that partitions (defined in the ‘Dataset Settings’ window, Figs. 4-10) are taken into account when per-
forming a ‘Model Test’. Given that model testing can take several hours to run on large datasets (especially 
with protein data, given the number of models to compare), MetaPIGA allows you to restrict model testing 
(Fig. 16) to the comparison of a subset of models.

Note: if you want to abort model testing (e.g., because you forgot to include/exclude taxa and/or charsets, or 
want to change your partitioning of the data), hit the ‘CANCEL TESTING’ button: testing will be aborted and 
all optimizations performed so far will be ignored. On the other hand, hitting a ‘CANCEL CURRENT’ button 
will stop optimization on the model being currently evaluated; obviously, the results of the statistical tests will 
then be contestable.

Intra-step optimization
All parameters of the model (transition/transversion ratio or components of the rate matrix, the 
shape parameter of the γ-distr, and Pinv), branch lengths, and among-partition relative rates can 
experience ‘Intra-step optimization’ (blue frame in Fig. 15) either periodically during the search 
and/or at the end of the search. The principle of stochastic methods (i.e., inter-step optimization 
methods), such as MC3 approximations of the Bayesian approach, stochastic simulated annealing, 
and genetic algorithms, is to AVOID intra-step optimization. Hence, the default in MetaPIGA is that 
all target parameters (chosen by the user) are NOT optimized intra-step (only the consensus tree 
obtained after replicated searches -- see section 5.4.5 -- will have it’s model parameters optimized). 
Hence, the stochastic heuristic itself will optimize topology, branch lengths and other model pa-
rameters during each search. When using the 'discrete' or 'stochastic' options (blue frame, Fig. 15), 
current best tree(s) are also optimized during the search, respectively every s numbers of steps or 
with a probability p at each step. These two options can obviously greatly increase running time. 

Note: For intra-step optimization, MetaPIGA implements a single algorithm: a genetic algorithm without re-
combination; each tree to optimize is copied 7 times and the population of 8 individuals experiences mutations 
(on selected targets); selection is performed with tournament; the GA is stops when the likelihood remains un-
changed for 200 steps (generations). Future versions of MetaPIGA will also include alternatives to the GA 
(such as, possibly, the Powell’s algorithm).

Note: the ‘consensus tree only’ option (blue frame, Fig. 15) is equivalent to the “never” option when perform-
ing a single search (one replicate). The two options differ only when preforming multiple replicates (see sec-
tion 5.4.5 below). When target parameters are optimized every s steps or stochastically, optimization is also 
performed at the end of (each) search.

5.4.3.  The ‘Starting tree(s)’ tab
As shown in Figure 17, the user can choose to produce the starting tree(s) either as NJ Tree(s) [47] 
or as Random Tree(s) (i.e., with random topology and random branch lengths) or as ‘Loose Neigh-
bor Joining’ (LNJ) tree(s), i.e., a pseudo-random topology (modified from [1]). For generating a 
LNJ tree, the user specifies a proportion value (p=[0-1]) and, at each step of the NJ algorithm, the 
two nodes to cluster, instead of corresponding to the smallest distance value, are randomly chosen 

from a list containing the NTax(Ntax −1)p
2

 smaller distances, where NTax is the number of se-

quences in the dataset. Branch lengths are computed as in the NJ method. In other words, the LNJ 
tree is a NJ tree with some topology randomization which amount is defined by the user. This 
approach is a particularly useful compromise between random starting trees (p=1) that require long 
runs of the heuristic for optimization, and a good but fixed topology (the NJ tree, i.e., p=0) that 
might be prone to generate solutions around a local optimum. The LNJ starting tree method is par-
ticularly well adapted to the metaGA. Indeed, starting from I*P (where I is the number of individu-
als (trees) per population and P is the number of populations) random trees will significantly in-
crease the search time whereas starting from I*P identical NJ trees will cause the stopping rule to be 
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reached too fast (see below) with local optima solutions. On the other hand, LNJ starting trees 
provide enough variation among populations for avoiding local optima but significantly 
speed-up the search in comparison with using ‘True random’ starting trees.

Fig. 17: The ‘Starting tree(s)’ window.

Note: The distance matrix used for building NJ or LNJ starting trees can be computed using any of the available substitution 
models (see above) and with or without Pinv and/or γ-distr. Unless the user wants to start  with trees with the highest likelihood 
possible, we recommend using a simple and  fast  model (e.g., JC and Poisson respectively for nucleotide and protein data) for 
generating starting trees as they will  anyway be highly modified during the heuristic search. For codon substitution models, three 
distance matrices are calculated (for codon positions 1, 2, and 3) using one of the available nucleotide substitution models. These 
three matrices are then weighted based on the evolutionary information they provide and combined into the single distance ma-
trix [48].
Note: When choosing the ‘Neighbor Joining’ starting-tree option  during a ‘Random-restart hill climbing’ search (Heuristic tab, 
section 5.4.1), the NJ tree will only be used for the first hill climbing, and ‘LNJ trees’ will be generated for all restarts.
Note: Arbitrary  starting trees (in Newick format) can also be imported by the user. When clicking on the ‘User tree(s)’ radio 
button  then on the ‘select’ button (Fig.17), you will  prompted to choose starting trees from a list. Various buttons allow you to 
add more trees in that list either from the ‘TreeViewer’ or from Nexus files. 
Notes: if the Nexus file contains user trees (in a Tree Block) and if you select the ‘User tree(s)’ starting-tree option:
✓ The first tree in the Tree Block will be used if you selected SA or stochastic HC as the heuristic;
✓ The I first trees in the Tree Block will be used when selecting GA as the heuristic option with I individuals (one tree per indi-

vidual);
✓ The P first trees in the Tree block will be used when selecting CP as the heuristic with  P populations (one tree per popula-

tion);
✓ If there are too few trees in the list of starting trees, MetaPIGA will cycle among the available trees;
✓ In the case of a ‘Random-restart hill  climbing’ search (‘Heuristic’ tab, section 5.4.1), if the number of provided starting trees 

is smaller than N+1 (i.e., the number of restarts plus 1), LNJ trees will be generated for the missing starting trees.

5.4.4.  The ‘Operators’ tab 
All stochastic heuristics use Operators, i.e., the topology and parameters’ modifiers allowing the 
heuristic to explore solution space. In MetaPIGA, we implemented 5 operators for perturbing tree 
topology and 6 operators for perturbing model parameters (see below). These operators can be used 
in any combination, either at equal or user-defined frequencies. The user can choose for these fre-
quencies to change dynamically during the search, i.e., MetaPIGA can periodically evaluate the 
relative gains in likelihood produced by each operator and adjust their frequencies proportionally5. 
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In the example given in figure 18, 
the evaluation of the operators’ per-
formances is computed every 100 
generations, and the minimum fre-
quency of any selected operator is 
set to 4%.
	
 ‘Nearest Neighbor Inter-
change’ (NNI), ‘Subtree Pruning 
Regrafting’ (SPR), and ‘Tree Bisec-
tion Reconnection’ (TBR) are classi-
cal branch-swapping algorithms 
used in many heuristics for phy-
logeny inference [21]. MetaPIGA 
also implements the following to-
pology operators:
✓ ‘Taxa Swap’ (TXS): n randomly-

selected terminal branches are 
randomly swapped. The value of n can be set to any number between 2 (default) and the total 
number of taxa (ALL), or randomly chosen (RAND) at each generation.

✓ ‘Subtree Swap’ (STS): 2 (default) or a random number (RAND) of subtrees are randomly 
swapped.

The 6 other operators affect model parameters:
✓ ‘Branch Length Mutation’ (BLM) and ‘internal Branch length mutation’ (BLMint). As our pre-

liminary analyses (data not shown) indicated that branch length optimization yields external 
branch lengths that are quite similar to those obtained through topology-constrained NJ (both on 
a NJ topology and on a ML topology), we implemented a branch-length operator (BLMint) af-
fecting internal branches only. We also implemented a branch-length operator (BLM) that can 
affect all (internal and external) branches. 

✓ ‘Rate Parameters Mutation’ (RPM): This operator is not available for the JC model as the rate 
parameter is identical for all possible substitutions under this model. The K2P and HKY models 
consider two rates (the rate of Ti, and the rate of Tv); hence, only the kappa parameter (ratio of 
Ti and Tv rates) can be affected. The TN93 model assigns 3 different rates: for transversions, for 
A↔G transitions, and for T↔C transitions. The GTR model allows assigning different rates for 
the 6 possible substitutions: A↔T, A↔C, G↔T, G↔C, A↔G, and T↔C. Under the TN93 and 
GTR models, the user can choose that each RPM operation affects either ‘1’ (default) randomly 
chosen rate parameter or ‘ALL’ rate parameters. The ‘1’ and ‘ALL’ commands are equivalent un-
der the K2P and HKY models because, although there are two rates, there is only one free rate 
parameter (the other one is set to 1). 

✓ ‘Gamma Distribution Mutation’ (GDM): modifies the γ-distr shape parameter.
✓ ‘Proportion of Invariable sites Mutation’ (PIM): affects Pinv. 
✓ Among-Partitions Rate Mutation’ (APRM): affects the relative rates among partitions. 

Notes: 
• The BLM, BLMint, RPM, and GDM operators affect their corresponding parameter by multiplying the pa-

rameter’s value of the previous generation by a random number drawn from an exponential distribution (with 
λ=2), and shifted by 0.5 (such that the minimum value is 0.5 and the mean is 1).

•  The PIM (values between 0 and 1) and APRM operators affect their corresponding parameters by multiplying 
the parameter’s value of the previous generation by a random number drawn from a normal distribution (with 
mean=1 and SD= 0.5). The resulting multiplier is rejected if ≤ 0.4.

• For LNJ starting trees, the initial length of all internal branches is computed with the NJ algorithm whereas, 

Fig. 18: The ‘Operators’ tab.
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for random starting trees, they are drawn from an exponential distribution (with λ=1), and shifted by 0.001 (to 
avoid zero length branches).

5.4.5.  The ‘Miscellaneous’ tab 
This window allows the user to choose stop criteria and define the parameters of replicated searches 
(to obtain estimates of branches’ posterior probabilities). In addition, the user can choose which log 
files to save on disk. Also, if a supported graphics card is available, the user can choose to use either 
the CPU or the GPU for likelihood computation. Increase of computation speed is particularly sig-
nificant for protein and codon models.

Fig. 19: The ‘Miscellaneous’ window for defining stopping condition(s), parameters for performing replicates (and 
obtaining estimates of posterior probabilities under the MetaGA), and the label of the directory in which all results 
will be saved. Log files to be saved on disk can also be defined. The amount of memory required for running the 
analysis (blue frame) has significantly increased because a complex model is used (Fig. 14) and because 4 cores 
have been chosen for parallelization (red frame). 

Stop Criteria
Exactly as in the MC3 approximations of the Bayesian approach [24, 25] implemented in the soft-
ware MrBayes [31] for which the user must define a number of generations and trees to sample be-
fore stopping the search, all stochastic heuristics implemented in MetaPIGA require a stop condi-
tion. We implemented several stop conditions in MetaPIGA; any number of conditions can be set 
and each one can be necessary or sufficient (Fig. 19, ‘nec.’ or ‘suf.’)6.  The stop criteria are: number 
of steps e.g., number of generations for the GA or the metaGA), elapsed time, and likelihood stabil-
ity. The later, termed ‘Automatic’ in the GUI (Fig. 19), means that the search stops when the log-
likelihood of the best tree has not improved of more than a given percentage (defined by the user, 
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0.05% by default) at any step during n steps (n also defined by the user). 
Note: that, when using the ‘Random-restart hill climbing’ heuristic (Fig. 11), the stop conditions are defined 
for one hill climbing. For example, when using random-restart hill climbing with 10 restarts and ‘2000 steps’ 
as the stop condition, 11 hill climbing of 2000 steps will be performed but only the best scored tree, among the 
11 results, will be kept.

When using the metaGA heuristic, one can use the Consensus’ stopping condition based on con-
vergence of the populations of solutions. Indeed, comparing (across generations) the frequencies of 
internal branches shared among the P*I trees provides a means for assessing whether the popula-
tions converge towards a stable set of solutions, i.e., towards a consensus with stable branch fre-
quencies. Hence, a stopping rule, not available to other heuristics, can be used under Consensus 
Pruning (=MetaGA): the user can choose to stop the search when a series of mean relative error 
(MRE) values remains, across generations, below a threshold (in %) defined by the user. In our ex-
perience, using the Consensus stopping-rule with a threshold of 5% works very well when perform-
ing replicates (for estimating posterior probabilities of clades, see below). On the other hand, if you 
perform a single search in order to find the single very best tree, you might want to experiment with 
either lower threshold values (e.g., 1%) or the stopping rule based on stability of the likelihood 
value (e.g., 200 steps without improvement of 0.01% of the log-likelihood value). 

Note: To increase independence among samples, consensus trees are sampled every n>1 (i.e., non-successive) 
generations. For example, given two consensus tree, Ti and Tj, corresponding to the consensus among the P*I 
trees at generations 5000 and 5005,  respectively, the MRE is computed as follows:

MRE(Ti ,Tj ) =

ΦTi

p − ΦTj

p

max(ΦTi

p ,ΦTj

p )p=1

nPartition

∑
nPartition

, where nPartition is the sum of taxa bi-partitions  observed in Ti and Tj 

(but identical partitions are counted once), and ΦTi

p and ΦTj

p are the consensus values of bi-partition p in trees Ti 

and Tj, respectively. Note that 
ΦTi

p − ΦTj

p

max(ΦTi

p ,ΦTj

p )
= 1 if either both ΦTi

p and ΦTj

p are nil, or if the corresponding 

internal branch does not exist in either Ti or Tj. Internal branches that are absent from both Ti and Tj are not 
considered. If the MRE(gen5000,gen5005) is above the user-defined threshold (e.g., 3%), it is discarded and a new 
MRE is computed for the comparison of generations 5005 and 5010. On the other hand, if MRE(gen5000,gen5005) is 
below the threshold, a counter is incremented and a new MRE is computed for the comparison of generations 
5000 with the next sample (here, corresponding to generation 5010). The user defines for how many samples 
the MRE must remain below the specified threshold before the search stops.

	

Replicates
This functionality is very important because it allows estimating the support of trees and 
clades. For all stochastic heuristics implemented in MetaPIGA, the user can chose to repeat the 
search many times, generating a majority-rule consensus tree among the replicates. This is particu-
larly useful under the metaGA because previous analyses [1] indicate that a set of multiple 
metaGA searches produces trees and clades with frequencies that approximate their posterior 
probabilities. Hence, metaGA branch support values would be comparable to posterior probabili-
ties provided by MC3 approximations of Bayesian approaches. The user can either fix the number of 
replicates, or specify a range of minimum and maximum number of replicates then choose to let 
MetaPIGA stop automatically, exploiting the MRE metric in a similar way as the consensus across 
populations in a single metaGA search (see above). 

Note: Here, however, the MRE is computed using consensuses across replicates, i.e., Ti is the consensus 
among the final trees obtained between replicates 1 and i. No additional replicate is produced when the MRE 
among N replicates remains below a given threshold. Consecutive replicates can be used because they are in-
dependent. As an example, if N is set to 10, and the first MRE below the user-defined threshold (e.g., 5%) in-
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volves replicates 1-241 and 1-242, the MRE is computed 9 additional times, i.e., between the reference con-
sensus T1-241 and Tj, for j corresponding to replicates 1-243, then 1-244, then 1-245, etc. The search stops if the 
inter-replicates MRE remains below 5% for 10 consecutive replicates. On the other hand, the counter is reset to 
zero as soon as the MRE exceeds 5%, and the new reference tree for computing the MRE is then set to T1-current 

replicate. The inter-generations (=intra-replicate)  MRE stopping rule can be used in combination with the inter-
replicate MRE stopping rule, letting MetaPIGA decide both when to stop each replicate and when to stop exe-
cuting additional replicates (i.e., when to stop the entire analysis).

Note: in most cases, performing multiple replicates is aimed at generating a consensus tree and estimating 
support of internal branches, hence, it is usually not important to perform a final intra-step optimization of all 
model parameters at the end of each replicate. This is why the default for ‘Intra-step optimization’ (blue 
frames, Fig. 15) is ‘consensus tree only’. It means that a final round of optimization for branch lengths and 
model parameters is NOT performed after each replicate (this will significantly save run time and will not 
change anything to the internal branches’ frequencies)  but it is performed on the final consensus tree (i.e., 
model parameters and branch lengths are optimized on the consensus-tree topology). When the user chooses to 
optimize best trees ‘at the end of (each) search’  the consensus tree is optimized as well. With the 'discrete' and 
'stochastic' options, current best tree(s) are also optimized multiple times during each replicate as well as at the 
end of each search.

The grid
To start an analysis on an XtremWeb-CH Grid, check the ‘Activate GRID’ check-box and write 
your grid credentials in the appropriate boxes. If your account is active and the MetaPIGA binaries 
are uploaded to the MetaPIGA module, your analysis will start on the Grid after you press the ‘Run’ 
button. For user documentation, please refer to the following site: 
www.xtremwebch.net/mediawiki/index.php/How_use. Please, contact us for additional information.

Log files
The user can choose to write log files on disk. This is however mostly for debugging purposes and 
performance testing such that only expert users might need this functionality. Selecting the log files 
indicated with asterisks can (i) significantly slow down the search and (ii) fill up large amount of 
disk space (with the magnitude of slow-down and fill-up approximately indicated by the number of 
asterisks).  All log files are written in the results folder (see below). 
✓ Dataset - Working matrix log file - Prints the compressed dataset into 'Dataset.log'. The last row contains the 

weight of each column, i.e., the number of times this data pattern is found in the data matrix. 
✓ Distances – Distance matrix log file - Prints the distance matrix into 'Distances.log'.
✓ Starting trees – Starting Trees log file - Prints the starting tree(s) into 'StartingTrees.tre'.
✓ Consensus (**)  – Consensus log file - The ‘Consensus.log' file records consensuses at each step of Consensus 

Pruning. It requires disk space between 100 bytes and 1Kb per taxa and per consensus recorded. For example, 
recording consensuses for a dataset of 200 taxa, using the metaGA heuristic for a fixed number of 5000 genera-
tions will generate a file between 100Mb and 1Gb for each replicate produced.

✓ Heuristic details (*) – Heuristic search log file - The 'Heuristic.log' file records details about each step of the 
heuristic. Requires disk space between 500 bytes & 1 Kb per iteration of the heuristic.

✓ Heuristic trees (**) – Heuristic search tree file - The 'Heuristic.tre' file records each tree found at each step of the 
heuristic. It requires disk space of +/- 130 bytes per taxa per tree recorded. For example, recording trees for a 
dataset of 200 taxa, using the metaGA heuristic with 4 populations of 4 individuals each, for a fixed amount of 
5000 generations will generate a file of about 1.5Gb for each replicate produced.

✓ Operator statistics – Operator statistics file – The ‘OperatorsStatistics.log’ file records operator statistics at the 
end of a search, as well as each time the operator frequencies have been updated.

✓ Operator details (***) - Operators log file - The 'OperatorsDetails.log' file records details about the operators 
used. It requires disk space of 200-300 bytes per taxa per operation. For example, recording operator details for a 
dataset of 200 taxa, using the metaGA heuristic with 4 populations of 4 individuals each, for a fixed number of 
5000 generations will generate a file between 1.7Gb and 3.4Gb for each replicate produced. 

✓ Ancestral sequences  - Ancestral sequences log file - At the end of the heuristic, the ancestral sequence probabili-
ties are printed into the 'AncestralSequences.log' file
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✓ Performances (*)  – The ‘Performances.log’ file records the amount of time (in nanoseconds) used by each op-
erator. It requires disk space of +/- 1 Kb per iteration of the heuristic.

Output label and directory
Viewing of the analyses results can be done in the MetaPIGA graphical interface. However, all re-
sults are also written on disk for later retrieval, viewing and manipulation. When a MetaPIGA 
search is started, a result directory (named ‘MetaPIGA results’) is generated in your home directory 
(Mac OS X & Linux) or in the ‘My documents’ folder (Windows). When you launch an analysis, 
the results will be automatically saved in a folder named with its ‘label’ (which is, by default, the 
name of the nexus file minus the “nex” extension, see Fig. 19) followed by the date (year-month-
day) followed by the time (hour_min_sec) at which the search was started. This allows for easy dif-
ferentiation of analyses performed at different times on the same dataset. For example, the result 
folder “ranoidea_1b - 2010-06-09 - 17_16_16” includes the result files for the analysis of the 
“ranoidea_1b.nex” data set started on June 9, 2010 at 5:16:16PM.
At the end of the search, the result folder contains the file Results.nex, i.e., a text file including:
➡ A MetaPIGA block corresponding to the search parameters;
➡ The data set;
➡ A tree block with the result trees, i.e.:

✴ Either (if replicates have not been performed):
• The best tree found (among all P*I trees) named appropriately (e.g., ‘TREE 

rana_~_2010~06~09_~_17_16_16_~_Genetic_algorithm_best_solution’) 
• The best tree, of each of the P populations, named appropriately (e.g., ‘TREE 

rana_~_2010~06~09_~_17_16_16_~_Best_individual_of_population_0’)
✴ Or (if replicates have been performed):

• The consensus tree (among all replicates) named appropriately (e.g., ‘TREE 
rana_~_2010~06~09_~_17_16_16_~_Consensus_tree_~_200_replicates’) 

• Then, for each replicate:
- The best tree found (among all P*I trees) named appropriately (e.g., TREE 

rana_~_2010~06~09_~_17_16_16_~_Genetic_algorithm_best_solution_[Rep_8]
- The best tree, of each of the P populations, named appropriately (e.g., ‘TREE 

rana_~_2010~06~09_~_17_16_16_~_Best_individual_of_population_0_[Rep_8]’)

If replicates have been performed, the result folder will also contain a text file ‘ConsensusTree.tre’ 
with the consensus tree among replicates. That tree is automatically updated in the run directory 
after each replicate. Hence, if a crash or power cut occurs, the latest consensus tree (summariz-
ing all replicates that accumulated before the cut)  can be loaded and visualized in MetaPIGA 
after restarting. As the name of the tree includes the number of replicates, you will know when the 
cut occurred. 
	
 As the consensus tree file is in Newick format, it can also be loaded in tree viewing softwares 
such as FigTree (http://tree.bio.ed.ac.uk/software/figtree/) or TreeView 
(http://taxonomy.zoology.gla.ac.uk/rod/treeview.html). 
If log files have been requested (see above), they will be printed either in the results folder or in cor-
responding replicates subfolders.

5.4.6.  Exiting the Settings Window 
Once all settings have been chosen by the user for the ‘Heuristic’, ‘Evaluation Criterion’, ‘Starting 
Tree(s)’, ‘Operators’, and ‘Miscellaneous’ tabs and the OK button has been hit, the Settings win-
dow closes and the main (entry) window is updated with the new settings listed in the upper-right 
window. The user can go back to the setting window at anytime for changing any parameter. 
Switching to another dataset in the left window and modifying the settings for that dataset does not 
affect the settings associates to the other datasets.
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5.5.  [R] The Run window

	

The search is launched by clicking on the 
‘[R] Run heuristic search’ button  (or by selecting in the menu: ‘Search’ ➙  ‘Run’). Once the 
starting trees have been generated (this can take time), the user can follow the ongoing search by 
looking at the lower left panel of the run window which displays graphical information specific to 
the chosen heuristic method. For example, figure 20 shows the running window for a MetaGA 
search with replicates, 4 populations, and stopping rules as indicated in figure 19. The lower-left 
panel indicates the likelihood progression of each of the populations (the best tree likelihood in each 
population is indicated) as well as which replicate is ongoing (rep 71). If you set replicates paralle-
lization to >1 (see red frame in Fig. 19), tabs give access to the graphs corresponding to each CPU 
core (core number 2 is selected in Fig. 20; red arrow). 
	
 When using the Stochastic Hill Climbing (HC) or the simple Genetic Algorithm (GA), the 
lower-left panel displays the likelihood progression of either the current tree (for stochastic HC) or 
of the best tree in the single population of trees (for the GA). When using the SSA, it indicates the 
progression of both the ‘temperature’ and of the likelihood. During a random-restart Hill Climbing, 
the graphical interface indicates the likelihood of the overall best solution (green line), the best so-
lution of the current restart (yellow curve), and the starting tree of each restart (red line). Magenta 
and blue vertical lines indicate new restarts and replicates, respectively.

Fig. 20: The run window when replicates have been requested under the MetaGA heuristic. The best tree likelihood 
in each population is indicated
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 In parallel with the likelihood progression displayed in the lower-left panel, the right panel 
displays information on the current inferred phylogeny. When performing a single search (i.e., 
without replicates) the tree displayed is the current best tree. When performing replicates (as in Fig. 
20), the right panel shows the current consensus tree (and corresponding frequencies of internal 
branches) among all replicates accumulated thus far. Hence, the right panel of the run window al-
lows the user to observe, on the fly, the progression of the phylogeny inference or (when using the 
metaGA) the progression of posterior probabilities of branches. In both cases, the user can switch 
between phylogram and cladogram (blue arrow in Fig. 20). The current values of the inter-
generations (=intra-replicate) MRE and inter-replicate MRE (see ‘stopping rules’ above) are also 
indicated (red frames in Fig. 20). 
	
 Once the search is completed, a window will pop up reminding you that all results (best trees 
and consensus tree) have been saved in your result folder, but will also propose you to send ‘All 
best trees’ or the ‘Consensus tree only’ to the ‘Tree Viewer’ (see section 5.6 below) for further ma-
nipulations (rerooting, exporting, changing substitution model and further optimizing model pa-
rameters, reconstruction of ancestral states, etc).
	
 When using the XtremWeb-CH Grid, the run window shows the status of the workers: 
queued, waiting, processing, completed, killed, or in error (see Fig. 21 for details). Workers with the 
status ‘complete’ have already sent their results back to your local machine. To use the XtremWeb 
Grid, please, refer to the following web site:
http://www.xtremwebch.net/mediawiki/index.php/How_use 

Fig. 21: The ‘Run’ window when using a XWCH grid. Status of worker are color-coded. A white box indicates that 
the replicate is waiting to be submitted to the grid whereas a gray box means that the replicate is waiting for an 
available worker. A blue box indicates that the worker is selected will start the analysis. A yellow box indicates that 
the replicate is running. A green box indicates that the replicate is completed and successfully retrieved from the 
grid. Finally, a red box means that MetaPIGA cannot retrieve the result or that the worker is not responding (error 
replicates are not used and have no effect on your analysis). Replicates stopped by the user are indicated with a 
black box (‘killed’).
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5.6.  [T] The tree viewer 

5.6.1.  Viewing and evaluating trees 
The Tree Viewer is opened by clicking on the 
‘[T] Tree viewer’ button  (or by selecting in the menu: ‘Tools’ ➙ ‘Tree viewer’). Trees can be 
saved in the ‘Tree viewer’ either at the end of a search or by importing trees from files. The user can 
even type (or copy-paste) a tree in Newick format in the lower left panel (red frame in Fig. 22), give 
it a name and add it to the TreeViewer’s list of trees. The Tree viewer allows to display, rename, or 
remove any of these trees at any time. The ‘Clear list’ button delete all trees from the Tree viewer. 
Buttons at the bottom of the right panel allow to display the selected tree in various styles (rectan-
gular, triangular, circular, phylogram), and show/hide its nodes’ numbers or its branch lengths. 
Other buttons allow rerooting a tree at any node, and save or print one or several selected tree(s). 
The upper right panel indicates the parameters of the model (for each partition, if any) and the cor-
responding likelihood (yellow oval; Fig.22) of the selected tree. Obviously, for computing a likeli-
hood, every tree must be associated to a dataset, hence, the ‘Tree Viewer’ only lists the trees that are 
relevant to the active dataset. The latter can be selected either in the ‘Current dataset’ scroll down 
list (Fig. 23) or in the MetaPIGA main window (Fig. 2 and 10). This allows the user to easily man-
age trees generated with different datasets. 

Note: Several trees can be simultaneously selected from the list by using ‘command click’ and/or ‘shift-click’. 
This allows removing several trees simultaneously. On the other hand, all other commands (model change, 
printing, rooting, ancestral state reconstruction, etc.) will affect only the tree highest in the list of selected trees. 

Fig. 22: The MetaPIGA tree viewer with one tree selected in the list. Red arrow: the ‘Model’ button gives access to a 
window (Fig. 23) for optimization of parameters and/or branch lengths and re-computation of the corresponding 
Likelihood under any substitution model. Green arrow: button giving access to the ancestral state reconstruction 
panel (Fig. 24).
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 Clicking on the ‘Model’ button in the ‘Tree-
Viewer’ (red arrow; Fig. 22), opens the ‘Evaluation 
settings’ window (Fig. 23) that allows (for the se-
lected tree) to (re-)optimize model parameters and/
or branch lengths and re-compute the correspond-
ing likelihood under any settings of model parame-
ters. Note that, although parameters can be manu-
ally set for each partition separately by using the 
vertical tabs (Fig. 23), clicking on the ‘Optimize 
model parameters’ or ‘Optimize branch lengths’ 
button will perform joint optimization for all parti-
tions. Once the model setting have been confirmed 
by clicking the ‘OK’ button, the upper-right panel 
of the ‘TreeViewer’ (Fig. 22), and the tree itself, 
will be updated with the new parameter values.

5.6.2.  Ancestral states reconstruction 
During phylogeny inference under ML, the probabilities of all possible character states at all nodes 
are computed for all characters. This provides means for reconstructing ancestral sequences both in 
silico and in the laboratory (e.g., [10-14]). Clicking on the button indicated with a green arrow in 
Fig. 22 gives access to the ancestral state reconstruction panel of the ‘TreeViewer’. Simply select an 
internal node on the tree for viewing its corresponding ancestral sequence. Various buttons allow for 
different display styles and for exporting the ancestral sequence(s) (and the corresponding statistics) 
either of the selected node or of all internal nodes of the tree. The ancestral sequence reconstruction 
we implemented is Empirical Bayes [49].

Fig. 24: The ancestral state reconstruction panel displays the conditional likelihood proportions of 
each state at each site for the node 6, directly selected on the tree in the upper-right panel. The and 

 buttons allow exporting to disk a text file with the ancestral states of the selected node or of all 
nodes, respectively. Use the  and  buttons to switch between a view where bars of the 
histogram, for each character, are in front of each others (with the column of lowest likelihood 
proportion in the front) and a stacked histogram. The sequence indicated at the top corresponds to the 
most likely ancestral sequence.

Fig. 23: The evaluation settings window.
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5.7.  Building and running batch 
files with the GUI
MetaPIGA supports the use of batch files that can 
be either written manually (see next Section) or 
generated using tools available in the GUI: datasets 
and their settings can be duplicated, settings can be “stamped”  from one dataset to another, and 
multiple combinations of datasets and settings can be saved in a batch file that can be run either in 
the GUI (with various graphical information on search progress) or using command line. 

5.7.1.  Transferring analysis settings among datasets 
Batch files are particularly useful for running different datasets with the same analysis settings. 
Imagine for example that you have opened 4 datasets in MetaPIGA (‘012x898 - Primate’, ‘PRO-
TEINS - 36x958’,  ‘ranoidea_1b’, and ‘055x1314 - mp1’) and that you have chosen all settings (us-
ing the various tabs in the Analysis 
Settings window, see section 5.4) 
for the dataset ranoidea_1b. Now, 
as shown in figure 25, you can 
transfer these settings to any com-
bination of other opened datasets by 
(i) choosing the source dataset, then 
(ii) clicking on the ‘[O] Associate 
settings’ button  (or by selecting 
in the menu: ‘Batch’ ➙ ‘Associate 
selected dataset analysis settings’), 
then (iii) selecting the dataset(s) 
you want to transfer the settings to, and (iv) click on the ‘Associate’ button. 
✓ The batch can then be run in the GUI by clicking on the ‘[⇑R] Run batch’ button  (or by se-

lecting in the menu: ‘Batch’ ➙ ‘Run all datasets in a batch’)
✓ Alternatively, the user can save the batch by clicking on the ‘Save all files in a Nexus batch’ 

button  (or by selecting in the menu: ‘Batch’ ➙  ‘Save all datasets in a batch Nexus file’). This 
file can be run in command line (e.g., on a distant server) or re-imported in MetaPIGA and run 
through the GUI.

5.7.2.  Duplicating datasets for batch files 
Batch files are equally useful for running sequentially a single data set under multiple different set-
tings: for example analyzing your favorite dataset with different substitution models or with differ-
ent heuristics. First make as many duplicates of your dataset (called ‘012x898 - Primate’ in Fig. 26) 
as you wish by clicking on the ‘[U] Duplicate selected dataset’ button  (or by selecting in the 
menu: ‘Batch’ ➙ ‘Duplicate selected dataset’). Then, select a duplicate and change the settings as 
required (in the ‘Analysis settings’ window). In this way, you can for example run a batch file that 
will sequentially run the ‘Primate’, ‘Primate_1’, ‘Primate_2’, and ‘Primate_3’ datasets with, re-
spectively the JC, K2P, HKY, and GTR substitution models. Note that, when duplicating a file, the 
settings listed in the ‘Dataset settings’ window (outgroup taxa, charsets, partitions, etc.) are dupli-
cated as well.

Fig. 25: Transferring settings from one dataset to other dataset(s).
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a

b

Fig. 26: (a) Duplicating datasets and (b) the parameter panel indicates the modified settings as chosen in the ‘[A] 
Analysis Settings’ window (here, we have changed the substitution model to K2P with rate heterogeneity (and 
estimated starting parameters) for the ‘Primate_1’ duplicate whereas the initial settings for the ‘Primate’ dataset is 
JC).

Notes: when running a batch file:
✓ The run window is simplified (in comparison to what is described above in Section 5.5). Beside basic statistics on 

the current run, the batch run window displays (in two separate panels) the log file information on the current run 
and on the overall batch. Two buttons allow for stopping either the current run or the entire batch of runs.

✓ The result trees of all replicates of all runs are automatically added to the ‘TreeViewer’.

5.8.  Building batch files manually
Instead of using the GUI, you can manually build Nexus batch files. As an example, the file below 
will run the single dataset of 15 taxa and 100 characters first with the JC model then with the GTR 
model + gamma-distributed rate heterogeneity. 
The full list of MetaPIGA commands for manually building batch files are available in the Appen-
dix 1.

Check the end of section 5.2 for instructions on how running MetaPIGA in command line (this 
is particularly useful if you want to send jobs to a distant server).

#NEXUS
[Metapiga - LANE (Laboratory of Artificial and Natural Evolution, University of Geneva)]

BEGIN BATCH;
RUN LABEL=15-100 DATA=data_1 PARAM=param_1;
RUN LABEL=15-100_1 DATA=data_1 PARAM=param_2;
END;

BEGIN METAPIGA;
[BATCHLABEL=param_1]
HEURISTIC CP CONSENSUS=STOCHASTIC OPERATOR=SUPERVISED NPOP=4 NIND=4 TOLERANCE=0.05 
HYBRIDIZATION=0.1 SELECTION=IMPROVE RECOMBINATION=0.1 OPERATORAPPLIEDTO=IND NCORE=1;
EVALUATION MODEL=JC DISTRIBUTION=NONE PINV=0.0;
OPTIMIZATION ENDONLY ALGO=GA TARGET{ BL };
STARTINGTREE GENERATION=LNJ(0.1) 
MODEL=JC DISTRIBUTION=NONE PINV=0.0;
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OPERATORS { TXS(2) STS(2) TBR NNI SPR BLM } SELECTION=RANDOM;
SETTINGS  LABEL=15-100;
STOPAFTER AUTO=200 CONSENSUS MRE=0.03 GENERATION=5 INTERVAL=10;
REPLICATES AUTOSTOP=MRE(0.05) RMIN=100 RMAX=10000 INTERVAL=10 PARALLEL=1;
OUTGROUP { ANABAENA_SP2 };
END;

BEGIN METAPIGA;
[BATCHLABEL=param_2]
HEURISTIC CP CONSENSUS=STOCHASTIC OPERATOR=SUPERVISED NPOP=4 NIND=4 TOLERANCE=0.05 
HYBRIDIZATION=0.1 SELECTION=IMPROVE RECOMBINATION=0.1 OPERATORAPPLIEDTO=IND NCORE=1;
EVALUATION 
MODEL=GTR RATEPARAM{ A(0.5) B(0.5) C(0.5) D(0.5) E(0.5)} DISTRIBUTION=GAMMA(4) 
DISTSHAPE=1.0 PINV=0.0;
OPTIMIZATION ENDONLY ALGO=GA TARGET{ BL R GAMMA };
STARTINGTREE GENERATION=LNJ(0.1) MODEL=JC DISTRIBUTION=NONE PINV=0.0;
OPERATORS { TXS(2) STS(2) TBR NNI SPR BLM RPM(ALL) GDM } SELECTION=RANDOM;
SETTINGS  LABEL=15-100_1;
STOPAFTER AUTO=200 CONSENSUS MRE=0.03 GENERATION=5 INTERVAL=10;
REPLICATES AUTOSTOP=MRE(0.05) RMIN=100 RMAX=10000 INTERVAL=10 PARALLEL=1;
OUTGROUP { ANABAENA_SP2 };
END;

BEGIN DATA;
[BATCHLABEL=data_1]
 DIMENSIONS NTAX=15 NCHAR=100;
 FORMAT DATATYPE=DNA MISSING=? GAP=- SYMBOLS="01" LABELS ITEMS=STATES STATESFORMAT-
=STATESPRESENT NOTOKENS;
 MATRIX
Anabaena_sp2! ! CAAGATTACAGACTAACTTATTACACACCTGATTACACACCTAAAGATACAGATATTCTGGCGGCATTCCGTGTTACACCCCAGCCCGGAGTTCCCTTTG
Chara_conniv! ! AAAGATTACAGATTAACTTACTATACTCCTGAGTATAAAACTAAAGATACTGACATTTTAGCTGCATTTCGTGTAACTCCACAACCTGGCGTTCCACCTG
Chlor_ell! ! AAAGACTACCGTTTAACTTACTATACTCCTGATTACCAACCAAAAGACACTGATATTCTTGCAGCGTTCCGTATGACTCCTCAACCAGGTGTTCCACCAG
Volvox_ro! ! AAAGATTATCGTTTAACATACTACACACCTGACTATGTAGTAAAAGACACTGACATCTTAGCAGCATTTCGTATGACTCCACAACCAGGTGTTCCACCTG
Sirogonium_melanosp! AAAGATTACAGACTTACATATTACACTCCTGAATATGAGACCAAAGAAACTGATATTTTAGCTGCATTCCGCATGACTCCTCAGCCTGGAGTACCACCTG
Zygnema_peliosp!! AAAGATTACAGACTTACCTACTATACTCCTGATTATGAGACCAAAGAAACCGACATTTTAGCTGCATTCCGCATGACTCCTCAAGCTGGAGTTCCACCAG
Conocephalum_92!! AAAGATTATCGATTAACTTATTATACTCCGGATTATGAAACTAAAGATACGGATATTTTAGCAGCATTTAGAATGACTCCTCAGCCTGGGGTACCAGCAG
Dumortiera_100! ! AAAGATTATCGATTAACTTATTACACTCCGGATTATGATACCAAGGATACAGATATTTTGGCAGCCTTTAGAATGACTCCTCAGCCTGGAGTACCAGCAG
Marchantia_5! ! AAAGATTATCGATTAACTTATTACACTCCGGATTATGAGACCAAGGATACGGATATTTTAGCAGCATTTAGAATGACTCCTCAGCCTGGAGTTCCAGCGG
Bazzania_jm! ! AAAGATTATAGATTAACCTATTATACGCCTGAATATGAGACCAAAGAGACAGATATTTTGGCAGCATTTCGTATGACTCCCCAACCGGGAGTACCACCTG
Metzgeria_3! ! AAAGATTACAGATTAAATTATTACACTCCAGATTATGAAACTAAAGATACAGATATTCTAGCAGCATTTCGTATGACCCCTCAGCCTGGAGTACCAGAAG
Porella_4! ! AAAGATTATAGATCAACTTATTATACTCCCGACTATGAAACAAAGGAGACAGATATTTTAGCAGCATTTCGTATGACTCCTCAACCTGGAGTACCAGAAC
Anthoceros_6! ! AAAGATTATAGATTAACCCATTATACCCCTGATTACGAGACCAAGGATACTGATATTTTGGCAGCGTCTTGAATGACTCCTTAACCAGGGGTGCCACCTG
Tetraphis_9! ! ?????????AGATTAACTTATTACACTCCAGATTATGAGACCAAAGAGACCGATATTTTAGCAGCATTTCGAATGACTCCTCAACCCGGAGTACCACCTG
Sphagnum_jm! ! AAAGATTACAGGTTGACTTATTACACCCCGGAGTATGCTGTCAAAGATACCGACATTTTGGCAGCATTTCGAATGACTCCTCAACCTGGAGTACCACCCG

;
END;
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5.9.   The ‘Tools’ Menu
In addition to functionalities discussed above (the ‘TreeViewer’, section 5.6.1; the ‘Ancestral states 
reconstruction’ panel, section 5.6.2; and the ‘Memory settings’ window, Fig. 1a), the ‘Tools’ menu 
(Fig. 27a) also gives access to a ‘Tree Generator’, a ‘Consensus Tree’ builder, and a tool for com-
puting pairwise distances. The ‘Tree Generator’ (Fig. 27b) allows for the generation of the NJ tree 
or any number of Loose Neighbor Joining (LNJ; section 5.4.3) or random trees. The trees generated 
are automatically transferred to the ‘TreeViewer’ under appropriate names (e.g., NJ, LNJ_1, LNJ_2, 
RANDOM_1, RANDOM_2). 

a.     b.

    

Fig. 27: (a) The Tools menu; (b), the Tree Generator.

In the ‘Consensus tree builder’ (Fig. 28a), trees in the left panel (corresponding to all trees from the 
‘TreeViewer’) can be moved to the right panel for building a majority-rule consensus tree (with fre-
quencies of clades) which is then automatically added to the TreeViewer under a chosen name 
(“my_consensus_tree”  in Fig. 28a). The pairwise distances tool (Fig. 28b) allows for  computing 
pairwise distances (among sequences of the active dataset) in the form of absolute numbers of dif-
ferences or various distances: uncorrected (none) or corrected following a nucleotide or amino-acid 
or Codon substitution model with or without rate heterogeneity. Distances can be exported to a text 
file for spreadsheet applications such as Excel. 

a.       b.

   

Fig. 28: (a) the Consensus tree builder; (b) the tool for computing pairwise distances.
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5.10.   Troubleshooting
	
 Please, don’t hesitate to contact us (Dorde.Grbic@unige.ch or michel.milinkovitch@unige.ch) 
if you encounter problems or bugs. We are also open to suggestions for improving the software. 

A few problems that can arise when using MetaPIGA are listed below.

Launching
When launching, MetaPIGA checks for the availability of updates (unless you have used the argu-
ment [noupdate] in command line). If you are connected to the internet, and there is no update to 
download, MetaPIGA will simply proceed with launching. If there is an update available, 
MetaPIGA will request your authorization to perform that update. If you are not correctly connected 
to the internet when launching the software, MetaPIGA will simply proceed with launching.

Java errors at launch
✓ The Java 1.6 Virtual Machine (VM) must be installed on your computer for running MetaPIGA. 

If you only have earlier Java version(s) installed, your computer will complain, e.g., with an er-
ror like that shown in Fig. 29. The Java 1.6 VM can be installed for Windows and Linux at 
http://java.com/en/download/manual.jsp. For Mac OSX, simply run the ‘Software Update’ fea-
ture available on the ‘Apple menu’. To check, on your Mac, if Java 6 is installed and active, sim-
ply launch the ‘Terminal.app’ available in the “Utilities” sub-folder of the “Applications” 
folder. Then check your Java version by typing ‘java -version’, and pressing ENTER. If you are 
using the Snow Leopard Mac OS (OS X 10.6), you can check the version(s) of Java installed on 
your machine by launching the ‘Java Preferences.app’ available in the “Utilities” sub-folder of 
the “Applications” folder. Make sure that Java 6 (or later) is in the list AND active (i.e., marked 
as in Fig. 30). You DON’T need to remove earlier Java versions (that might be required for older 
softwares). Note that if your Mac OS is older than 10.5, it will not support Java 1.6 ... hence, you 
will not be able to run MetaPIGA.  

Fig. 29: Error message at launch due to the absence 
of a Java 1.6 (or later) VM.

Fig. 30: The Java Preferences utility on Mac OS X.

✓ If MetaPIGA crashes at launch, it can also be due to a lack of memory. Try closing other applica-
tions, or change the maximum amount of memory allowed to MetaPIGA: in the file 
‘mp2_console.vmoptions’ (that you can find at the root of the MetaPIGA folder, i.e., where the 
program is installed) , set the Xmx value (and not the Xms value) to a lower value (expressed in 
megabytes; this value must be a multiple of 256). Note however that, to avoid problems, we 
made the installer allocate to MetaPIGA half of the memory available on your running machine. 
This should insure MetaPIGA to launch properly, even if other programs are running. Once 
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MetaPIGA has launched, the ‘memory settings’ (in the ‘Tools’ menu of MetaPIGA) allows 
changing the amount of memory allocated to MetaPIGA. The maximum value available in 
‘memory settings’ is 1536 Mb on a 32-bit system (i.e., the maximum allowed by java on such a 
system) ... even if the computer is equipped with more than 2Go of RAM. On the other hand, the 
maximum value available on a 64-bit system (i.e., most of modern machines) can be much 
higher than 1536 Mb but is constrained to the amount of memory available on that machine mi-
nus 512Mb.

Recovering results if a crash occurs
A ‘Results.nex’ file is written to the Results directory (see end of section 5.4.5) when the search is 
completed. On the other hand, the ‘ConsensusTree.tre’ file is automatically updated in the run di-
rectory during the search. Hence, if a crash occurs, for example after a significant running time in-
volving a number of replicates, the ‘ConsensusTree.tre’ file (summarizing all replicates that accu-
mulated before the crash) can be loaded and visualized in MetaPIGA after restarting. As the name 
of the tree includes the number of replicates, you will know when the crash occurred. As the con-
sensus tree file is in Newick format, it can also be loaded in tree viewing softwares such as:
-FigTree (http://tree.bio.ed.ac.uk/software/figtree/) 
-TreeView (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html). 

Others

✓ When negative eigenvalues are encountered under GTR, an error message is generated and the 
search crashes.

✓ Sequences too dissimilar (>0.75 for DNA sequences, >0.95 for Protein sequences, and > 0.5 for 
standard binary data) can cause an error when computing distance matrices. The data quality 
control button (i.e., ‘scissor’ button, section 5.2.2) and the ‘check for saturation’ function in the 
‘Dataset’ menu allow avoiding that problem.
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Third party libraries: MetaPIGA makes use of the following third party libraries  (source code 
available through the corresponding links):
• The CERN Colt Scientific library 1.2.0 for pseudorandom number generation and statistics: 

http://acs.lbl.gov/software/colt/
• JAMA : A Java Matrix Package for matrix manipulations and eigen values decomposition: 

http://math.nist.gov/javanumerics/jama/
• The BioJava library to parse NEXUS files: http://www.biojava.org/

BioJava: an Open-Source Framework for Bioinformatics 
R.C.G. Holland; T. Down; M. Pocock; A. Prlić; D. Huen; K. James; S. Foisy; A. Dräger; A. 
Yates; M. Heuer; M.J. Schreiber
Bioinformatics (2008) 24 (18): 2096-2097; doi: 10.1093/bioinformatics/btn397

• The Google Collection classes library for its BiMap: 
http://code.google.com/p/google-collections/
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7.	  	  	  Appendix	  1:	  The	  MetaPIGA	  commands

MetaPIGA	  2	  requires 	  only	  one	  thing	  to	  run:	  a 	  nexus 	  input	  file.	  This 	  file	  must	  contain	  your	  sequence	  
data	  following	   the	  standard	  Nexus	  data 	  structure,	   i.e.,	   using	  data	  blocks 	  (or	   taxa	  +	   characters	  
blocks).	  This	  file	  can	  be	  loaded	  and	  run	  either	  using	  the 	  menu-‐driven	  interface 	  (GUI)	  of	  MetaPIGA	  
2	  or	  in	  command	  line.
All 	  menus 	  are 	  described	  in	  detail 	  above.	  However,	  the	  user	  can	  also	  choose	  to	  include	  all 	  custom-‐
ized	  seMngs 	  of	  MetaPIGA-‐2	  in	  the	  Nexus 	  input	  file	  and	  send	  it	  to	  the	  program	  for	  running	  without	  
the	  use	  of	  the	  interface.	  This 	  is 	  parNcularly	  useful 	  for	  performing	  unsupervised	  successive	  mulNple	  
long	  runs	  (batch	  files).	  In	  that	  case,	  the	  customized	  seMngs	  of	  MetaPIGA	  must	  be	  included	  in	  the	  
Nexus	  input	  file 	  in	  the 	  form	  of	  a 	  ‘metapiga 	  block’.	  The 	  structure	  of	  this 	  block	  is 	  described	  hereaf-‐
ter.	  Note	  that,	  if	  you	  don’t	  like	  typing	  the	  parameter	  seMngs	  yourself,	  you	  can	  use	  the	  MetaPIGA-‐2	  
user	  interface	  to	  generate,	  save,	  and	  run	  batch	  files.	  

ConvenNons:
When	  a 	  parameter	  is 	  associated	  with	  informaNon	  between	  round	  parentheses	  (	  ),	  there 	  must	  be	  
no	  blank	  before	  or	  within	  the	  parentheses.	  	  For	  example:	  

DISTRIBUTION = GAMMA(4) 
cannot	  be	  wriTen

DISTRIBUTION = GAMMA (4)
nor

DISTRIBUTION = GAMMA( 4 )
nor

DISTRIBUTION = GAMMA ( 4 )

All 	  parameters 	  between	  squared	  brackets 	  [	  ]	  are	  opNonal 	  and	  can	  be 	  omiTed,	  and	  MetaPIGA	  will	  
then	   use 	  default	   values	   (underlined	   in	   the	  block	   descripNon).	   DescripNon	   of	   the 	  commands 	  is	  
given	  in	  the	  above	  user	  manual	  (SecNon	  5.3:	  ‘Dataset	  seMngs’).

Batch files
You	  can	  easily	  create 	  batch	  files,	  to	  run	  mulNple	  analyses 	  automaNcally.	  Batch	  files	  are	  nexus 	  files	  
in	  which	  you	  can	  add	  as 	  many	  data	  block,	  metapiga	  blocks,	  and	  tree	  blocks	  as 	  you	  wish.	  You	  must	  
add	  a	  comment	  in	  the	  first	  line	  of	  each	  metapiga 	  block	  in 	  the	  form	  of	  a 	  label	  using	  [BATCHLABEL = 
label].	  Then,	  create	  a	  batch	  block	  that	  associates 	  each	  run	  to	  (i)	  a	  data 	  block	  and	  (ii)	  a	  metapiga	  
block	  using	  those	  labels.	  The	  use	  of	  a	  tree	  block	  is	  opNonal.
For	  example,	  to	  run	  a	  given	  dataset	  with	  2	  different	  sets 	  of	  parameters 	  (the	  second	  requiring	  user-‐
defined	  starNng	  trees),	  the	  batch	  file	  will	  look	  like	  this:
BEGIN BATCH;

RUN LABEL=’run1’ DATA=label1 PARAM=label1;
RUN LABEL=’run2’ DATA=label1 PARAM=label2 TREE=label2;

END;
BEGIN METAPIGA; [BATCHLABEL = label1]
…
END;
BEGIN METAPIGA; [BATCHLABEL = label2]
…
END;
BEGIN DATA; [BATCHLABEL = label1]
…
END;
BEGIN TREE; [BATCHLABEL = label2]
…
END;
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BATCH Block
BEGIN BATCH;
RUN LABEL=’run_label’ DATA=data_block_label 
PARAM=metapiga_block_label [TREES=tree_block_label];
RUN …

END;

METAPIGA Block
BEGIN METAPIGA;

 [HEURISTIC 
‘HC [RESTART = nbr_of_restart]
| SA [COOLINGSCHEDULE = ‘LUNDY | RP(delta) | CAUCHY | BOLTZMANN | GEOM(alpha) 
| LIN | TRI | POLY | EXP | LOG | PER | SPER | TANH | COSH’] [LunC = lundy_c] 
[LunALPHA = lundy_a] [INITACCEPT = value] [FINALACCEPT = value] [DELTAL = 
‘PERCENT[(P)] | BURNIN’] [REHEATING = ‘DECREMENTS(d) | THRESHOLD(p) | NEVER’] 
[COOLING = ‘STEPS(steps) | SF(s,f)’] [DYNCS] 
| GA [NIND = individuals] [SELECTION = ‘RANK | TOURNAMENT | REPLACEMENT[(S)] 
| IMPROVE | KEEPBEST’] [RECOMBINATION = rate] [OPERATORAPPLIEDTO = ‘STEP | 
IND’] 
| CP [CONSENSUS = ‘STRICT | STOCHASTIC’] [OPERATOR = BLIND | SUPERVISED] [NPOP 
= populations] [NIND = individuals] [TOLERANCE = tolerance] [HYBRIDIZATION 
= rate] [SELECTION = ‘RANK | TOURNAMENT | REPLACEMENT[(S)] | IMPROVE | KEEP-
BEST’] [RECOMBINATION = rate] [OPERATORAPPLIEDTO = ‘STEP | POP | IND’] [NCORE 
= cores]’ ;]

[EVALUATION [RATE = ‘BRANCH | TREE’] [DATATYPE=CODON CODONRANGE{start_position-
end_position}] [MODEL = ‘GTR | TN93 | HKY85 | K2P | JC | GTR20 | WAG | 
JTT | DAYHOFF | VT | BLOSUM62 | CPREV | MTREV | RTREV | MTMAM | POISSON 
| GTR2 | ECM | GY’] [] [RATEPARAM {param(value) …}] [AAFREQ = ‘EMPIRICAL | 
ESTIMATED’] [DISTRIBUTION = ‘NONE | GAMMA(subsets) | VDP(subsets)’] [DIST-
SHAPE = shape] [PINV = proportion_of_invariant];]

[SPECIFICPARTPARAM PARTNAME = charset-name [RATEPARAM {param(value) …}] [DIST-
SHAPE = shape] [PINV = proportion_of_invariant];]

[OPTIMIZATION ‘NEVER | CONSENSUSTREE | ENDSEARCH | DISC(s) | STOCH(p)’ [ALGO = 
algorithm] [TARGET {param …}] ;]

[STARTINGTREE [GENERATION = ‘NJ, LNJ(range), RANDOM, GIVEN’] [MODEL = ‘GTR | 
TN93 | HKY85 | K2P | JC | GTR20 | POISSON | GTR2 | NONE’] [DISTRIBUTION = 
‘NONE | GAMMA(shape)| VDP(subsets)’]  [PINV = invariant] [PI = ‘EQUAL | 
ESTIMATED | CONSTANT’];]

[OPERATORS {operator[(parameter)] [operator[(parameter)] …]} [SELECTION = 
‘RANDOM | ORDERED | FREQLIST’] ;]

[FREQUENCIES {operator(frequency) …} ;] 
[DYNAMICFREQ DYNOPERATORS {operator …} [DINT = interval] [DMIN = minimum_fre-

quency];]
[SETTINGS [REMOVECOL = ‘NONE | GAP | NGAP’] [DIR = ’output_directory’] [LABEL 

= ’run_label’] [GRID [SERVER = address] [CLIENT = id] [MODULE = id]];]
[STOPAFTER [STEPS = steps] [TIME = hours] [AUTO = steps [AUTOTHRESHOLD = 

value]] [CONSENSUS [MRE = error] [GENERATION = steps] [INTERVAL = steps]] 
[NECESSARY {stop_condition …}];]

[REPLICATES [AUTOSTOP = ‘NONE | MRE[(error)]’] [RNUM = nbr_rep] [RMIN = 
nbr_rep] [RMAX = nbr_rep] [INTERVAL = interval] [PARALLEL = cores];]

[OUTGROUP {taxa …} ;]
[DELETE {taxa …} ;]
[CHARSET NAME = charset-name SET{character-set …} ;] …
[EXCLUDE {charset …} ;]
[PARTITION {charset …} ;]
[LOG {logFile …} ;]

END;
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Description of the parameters:

1. HEURISTIC –	  By	  default,	  Metapiga	  uses	  the	  metaGA	  heurisNc	  (i.e.,	  a	  geneNc	  algorithm	  with	  consensus	  pruning;	  
see	  Lemmon	  &	  Milinkovitch	  2002	  for	  details).	  
• HC –	  Hill	  Climbing.	  Tree	  space	  is	  explored	  using	  local	  perturbaNons	  (of	  topology	  and/or	  branch	  lengths	  

and/or	  model	  parameters).	  New	  trees	  with	  improved	  likelihood	  are	  always	  accepted	  whereas	  trees	  with	  
worse	  score	  are	  always	  discarded.	  This	  is	  the	  ‘stochasNc	  hill	  climbing’	  heurisNc.	  We also implement a meta-
heuristic called 'random-restart hill climbing'. When the RESTART	  parameter	  is	  set	  to	  a	  value	  greater	  than	  0, 
RESTART+1	  hill climbings are iteratively performed, each time with a different initial tree. Among the RE-
START+1 solution trees, only the best is kept.
Note that, when choosing the ‘Neighbor Joining’ starting-tree option (see STARTINGTREE parameter), the NJ 
tree will only be used for the first hill climbing, and Loose NJ trees will be generated for all restarts. Like-
wise, when choosing 'user trees' but the number of provided starting trees is smaller than RESTART+1, LNJ 
random trees will be generated for the missing starting trees. Note also that the stop conditions (see	  STOPAF-
TER parameter) are defined for one hill climbing. For example, when choosing 10 restarts and ‘2000 steps’ 
as the stop condition, 11 hill climbing of 2000 steps will be performed, but only the best scored tree, among 
the 11 results, will be kept.

• SA – Simulated	  Annealing.	  StarNng	  from	  a	  single	  tree,	  tree	  space	  is	  explored	  using	  local	  perturbaNons	  (of	  
topology	  and/or	  branch	  lengths	  and/or	  model	  parameters).	  New	  trees	  with	  improved	  likelihood	  are	  always	  
accepted,	  whereas	  trees	  with	  worse	  score	  are	  accepted	  with	  a	  probability	  	  which	  is	  a	  funcNon	  of	  both	  the	  
proporNonate	  decrease	  in	  score	  and	  a	  control	  parameter	  called	  "temperature".	  Much	  addiNonal	  informa-‐
Non	  is	  available	  in	  Kirkpatrick	  et	  al.,	  OpNmizaNon	  by	  Simulated	  Annealing,	  Science,	  220,	  4598,	  671-‐680	  
(1983).

§ SCHEDULE – The	  “cooling	  schedule”	  describes	  how	  the	  “temperature”	  decreases	  during	  the	  run.
	  is	  the	  temperature	  aker	  	  decrements	  and	  	  is	  the	  maximum	  number	  of	  temperature	  decrements	  be-‐
fore	  reseNng	  the	  temperature	  to	  the	  starNng	  temperature	  	  (see	  REHEATING parameter	  
below).Except	  for	  the	  LUNDY	  cooling	  schedule,	  	  (and	  when	  it	  applies)	  are	  computed	  as	  follows:
where	  	  is	  an	  upper	  bound	  on	  the	  change	  in	  likelihood,	  	  is	  the	  iniNal	  and	  	  the	  final	  acceptance	  parame-‐
ters	  (see	  below).Available	  schedules	  are	  :

o LUNDY - The	  cooling	  schedule	  described	  by	  Lundy	  (1985).	  
with	  	  	  
being	  the	  parameter	  that	  controls	  the	  rate	  of	  cooling	  (its	  value	  is	  <	  1)	  where	  	  is	  the	  number	  of	  
sequences,	  (taxa)	  is	  the	  number	  of	  sites,	  and	  	  are	  set	  between	  0	  and	  1	  (see	  C	  and	  ALPHA	  pa-‐
rameters	  below)	  and	  	  is	  the	  log	  likelihood	  of	  the	  neighbor	  joining	  tree.	  It’s	  the	  default	  cooling	  
schedule.

o RP(delta) – A	  raNo-‐percent	  cooling	  schedule.	  
o CAUCHY – Fast	  Cauchy	  schedule.	  
o BOLTZMANN – Boltzmann	  schedule.
o GEOM(alpha) – Geometric	  schedule.	  
o LIN – Linear	  schedule.	  
o TRI – Triangular	  schedule.	  
o POLY – Polynomial	  schedule.	  
o EXP – Transcendental	  (exponenNal)	  schedule.	  
o LOG – Transcendental	  (logarithmic)	  schedule.	  
o PER – Transcendental	  (periodic)	  schedule.
o SPER – Transcendental	  (smoothed	  periodic)	  schedule.	  
o TANH – Hyperbolic	  (tanh)	  schedule.	  
o COSH – Hyperbolic	  (cosh)	  schedule.	  

§ LUNC – The	  parameter	  	  used	  in	  the	  LUNDY	  cooling	  schedule.	  You	  can	  set	  its	  value	  between	  [0,1]	  and	  
the	  default	  value	  is	  0.5.

§ LUNALPHA – The	  parameter	  	  used	  in	  the	  LUNDY	  cooling	  schedule.	  You	  can	  set	  its	  value	  between	  [0,1]	  
and	  the	  default	  value	  is	  0.5.
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§ INITACCEPT – It’s	  the	  iniNal	  maximum	  probability	  ()	  to	  accept	  a	  tree	  with	  a	  ‘worse’	  likelihood.	  
Hence,	  it	  will	  define	  the	  starNng	  temperature	  used	  when	  simulated	  annealing	  starts	  or	  when	  the	  
temperature	  is	  reset	  (see	  REHEATING below).	  It’s	  a	  probability,	  chosen	  between	  [0,	  1],	  is	  set	  to	  0.7	  
by	  default.	  Used	  with	  all	  cooling	  schedules	  except	  LUNDY.

§ FINALACCEPT – It’s	  the	  final	  maximum	  probability	  to	  accept	  a	  tree	  with	  a	  ‘worse’	  likelihood	  (),	  so	  it	  
will	  define	  the	  ending	  temperature	  used	  when	  simulated	  annealing	  should	  end	  or	  before	  reseNng	  
the	  temperature	  (see	  REHEATING below).	  It’s	  a	  probability,	  chosen	  between	  [0,	  1],	  must	  be	  smaller	  
than	  INITACCEPT	  and	  is	  set	  to	  0.01	  by	  default.	  Only	  used	  with	  LIN,	  TRI,	  POLY,	  EXP,	  LOG,	  PER,	  SPER,	  
HYPTANH and	  HYPCOSH cooling	  schedules.

§ DELTAL – Determines	  how	  	  is	  iniNalized.	  	  is	  used	  to	  compute	  the	  starNng	  temperature,	  and	  is	  the	  
maximum	  distance	  between	  a	  current	  soluNon	  and	  a	  worse	  soluNon	  that	  could	  be	  accepted	  with	  a	  
probability	  of	  .

o PERCENT(p) – 	  is	  set	  to	  a	  percentage	  p	  of	  the	  Neighbor	  Joining	  Tree	  log	  likelihood.	  You	  can	  
set	  the	  value	  of	  p	  between	  [0,1]	  and	  the	  default	  is	  0.001	  (0.1%	  of	  the	  NJT).	  

o BURNIN – Selected	  operators	  are	  used	  on	  the	  starNng	  tree	  for	  a	  burn-‐in	  period	  of	  20	  appli-‐
caNons	  for	  each	  operator.	  The	  maximum	  change	  in	  log	  likelihood	  observed	  during	  this	  period	  
is	  used	  as	  .

§ REHEATING – Determines	  under	  which	  condiNon	  the	  temperature	  is	  reset	  to	  the	  iniNal	  starNng	  
temperature.

o NEVER – Temperature	  is	  never	  reset,	  but	  this	  opNon	  can	  only	  be	  selected	  with	  LUNDY,	  RP,	  
CAUCHY,	  BOLTZMANN and	  GEOMETRIC cooling	  schedules.

o DECREMENTS(d) – Temperature	  is	  reset	  when	  it	  has	  decreased	  d	  Nmes.	  It’s	  the	  default	  RE-
HEATING opNon,	  usable	  with	  all	  cooling	  schedules.

o THRESHOLD(p) – Temperature	  is	  reset	  when	  it	  aTains	  a	  threshold	  equal	  to	  	  Note	  that	  	  must	  
be	  smaller	  than	  1	  and	  sufficiently	  small	  (0.001	  is	  the	  default	  value).	  This	  REHEATING opNon	  
can	  only	  be	  used	  with	  LUNDY,	  RP,	  CAUCHY,	  BOLTZMANN and	  GEOMETRIC cooling	  schedules.

§ COOLING – Establishes	  the	  number	  of	  Nmes	  a	  tree	  is	  modified	  before	  the	  temperature	  is	  decreased.	  
You	  can	  choose	  between	  2	  cooling	  types:

o 	  STEPS(steps) – Stay	  at	  the	  same	  temperature	  for	  a	  given	  number	  of	  steps.	  	  
o SF(s,f) – Lower	  the	  temperature	  aker	  s	  successes	  or	  f	  failures,	  whichever	  comes	  first.	  

Successes	  are	  tree	  modificaNons	  that	  improve	  the	  likelihood	  and	  failures	  are	  those	  that	  do	  
not.	  This	  COOLING	  is	  used	  by	  default,	  with	  s	  =10	  and	  f	  =100.

• GA – Gene4c	  Algorithm. At	  each	  step	  (generaNon)	  of	  the	  heurisNc,	  each	  individual	  of	  a	  populaNon	  of	  
trees	  is	  mutated	  using	  the	  selected	  operators.	  Death	  /	  survival	  of	  individuals	  is	  controlled	  using	  a	  selecNon	  
scheme.

§ NIND – The	  number	  of	  individuals	  (trees)	  within	  the	  populaNon	  (set).	  Set	  to	  8	  by	  default.
§ SELECTION – The	  method	  used	  to	  control	  death	  /	  survival	  of	  individuals	  :

o RANK – We	  implement	  a	  rank	  selecNon	  similar	  to	  that	  described	  in	  (Lewis	  1998,	  Mol.	  Biol.	  
Evol.	  15,	  277-‐283).	  The	  individual	  having	  the	  highest	  lnL	  is	  automaNcally	  allowed	  to	  leave	  
k=0.25*NIND	  offspring	  (i.e.,	  copies	  of	  itself)	  in	  the	  next	  generaNon.	  Then,	  each	  individual	  is	  
assigned	  a	  probability	  p	  of	  leaving	  an	  offspring	  as	  a	  funcNon	  of	  its	  posiNon	  in	  a	  list	  in	  which	  
individuals	  are	  ranked	  by	  their	  score.	  The	  probability	  p	  for	  the	  ith	  individual	  of	  leaving	  an	  off-‐
spring	  to	  the	  next	  generaNon	  is	  equal	  to:

o TOURNAMENT – Two	  individuals	  are	  drawn	  randomly	  from	  the	  populaNon	  of	  n	  individuals,	  and	  
one	  offspring	  is	  produced	  from	  the	  individual	  with	  higher	  score.	  Both	  trees	  are	  then	  placed	  
back	  into	  the	  maNng	  populaNon,	  and	  the	  whole	  process	  is	  repeated	  unNl	  n	  offspring	  have	  
been	  generated.	  This	  is	  the	  default	  selecNon	  method.

o REPLACEMENT – Two	  individuals	  are	  drawn	  randomly	  from	  the	  populaNon	  of	  n	  individuals	  
and	  two	  copies	  of	  the	  beTer	  individual	  are	  returned	  to	  the	  maNng	  pool	  (parents	  are	  dis-‐
carded).	  The	  process	  is	  repeated	  sn	  Nmes,	  where	  s	  is	  the	  strength	  of	  the	  selecNon	  (1.0	  by	  de-‐
fault),	  then	  the	  offspring	  populaNon	  is	  generated	  as	  an	  exact	  copy	  of	  the	  post-‐selecNon	  par-‐
ent	  populaNon.

o IMPROVE –	  Only	  those	  individuals	  that	  have	  scores	  beTer	  than	  that	  of	  the	  best	  tree	  from	  the	  
previous	  generaNon	  are	  kept.	  Each	  individual	  that	  fails	  this	  test	  is	  discarded	  and	  replaced	  by	  a	  
copy	  of	  the	  current	  best	  individual.	  
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o KEEPBEST – Only	  the	  best	  individual	  of	  each	  populaNon	  is	  kept,	  others	  are	  replaced	  by	  a	  
copy	  of	  it.

§ RECOMBINATION	  – Each	  counter-‐selected	  sub-‐opNmal	  individual	  has	  a	  probability	  p	  (between	  [0,	  1]	  
and	  set	  to	  0.1	  by	  default)	  to	  recombine	  with	  a	  beTer	  individual	  in	  the	  populaNon.	  RecombinaNon	  is	  
performed	  by	  exchanging	  subtrees	  defined	  by	  one	  of	  the	  idenNcal	  taxa	  parNNons	  in	  the	  two	  parental	  
trees	  (i.e.,	  one	  internal	  branch	  that	  defines	  subtrees	  including	  the	  same	  taxa	  but	  with	  potenNally	  
different	  sub-‐topologies).	  If	  no	  common	  branch	  exists,	  the	  offspring	  is	  defined	  as	  a	  copy	  of	  the	  best	  
individual.	  A	  recombinaNon	  event	  can	  be	  viewed	  as	  a	  large	  number	  of	  simultaneous	  topological	  mu-‐
taNons.	  The	  exact	  procedure	  depends	  on	  the	  selecNon	  scheme:

o RANK – RecombinaNon	  is	  not	  available	  under	  that	  selecNon	  scheme.
o TOURNAMENT – With	  a	  probability	  p,	  the	  offspring	  set	  aker	  a	  tournament	  is	  not	  a	  copy	  the	  

individual	  with	  higher	  score	  but	  a	  recombinaNon	  between	  the	  two	  trees	  that	  have	  been	  ini-‐
Nally	  drawn	  for	  tournament.

o REPLACEMENT – With	  a	  probability	  p,	  only	  one	  (instead	  of	  two)	  copy	  of	  the	  beTer	  individual	  
is	  returned	  to	  the	  maNng	  pool.	  The	  second	  individual	  returned	  is	  a	  recombinaNon	  between	  
the	  two	  trees	  that	  have	  been	  iniNally	  drawn.

o IMPROVE –	  Each	  individual	  that	  does	  not	  have	  a	  score	  beTer	  than	  that	  of	  the	  best	  tree	  from	  
the	  previous	  generaNon	  has	  a	  probability	  p	  of	  of	  leaving	  an	  offspring	  by	  recombining	  with	  the	  
current	  best	  individual.	  

o KEEPBEST – Each	  individual	  that	  does	  not	  have	  a	  score	  beTer	  than	  that	  of	  the	  best	  current	  
individual	  has	  a	  probability	  p	  of	  of	  leaving	  an	  offspring	  by	  recombining	  with	  the	  current	  best	  
individual.

§OPERATORAPPLIEDTO – IND is	  the	  default
o STEP – At	  each	  step	  of	  the	  heurisNc,	  a	  single	  mutaNon	  operator	  is	  selected	  and	  applied	  to	  

each	  tree	  of	  each	  populaNon.
o IND – At	  each	  step	  of	  the	  heurisNc,	  each	  individual	  is	  separately	  assigned	  a	  mutaNon	  opera-‐

tor.
• CP – Consensus	  pruning	  (MetaGA). This	  is	  the	  core	  of	  the	  "metaPopulaNon	  geneNc	  Algorithm"	  (Lemmon	  

&	  Milinkovitch,	  PNAS	  99:10516-‐10521	  (2002)):	  P	  sets	  (populaNons)	  containing	  each	  I	  trees	  (individuals)	  are	  
forced	  to	  cooperate	  in	  the	  search	  for	  the	  opNmal	  trees.	  At	  each	  step	  (generaNon)	  of	  the	  heurisNc,	  individu-‐
als	  are	  mutated	  following	  inter-‐populaNons	  consensus	  rules.	  Death	  /	  survival	  of	  individuals	  is	  defined	  using	  
a	  selecNon	  scheme.

§ CONSENSUS – STOCHASTIC is	  chosen	  by	  default
o STRICT – Any	  branch	  shared	  by	  all	  trees	  across	  all	  populaNons	  (100%	  consensus)	  will	  not	  be	  

mutated.	  MutaNons	  on	  any	  other	  branch	  will	  be	  unconstrained.	  
o STOCHASTIC – Each	  branch	  (parNNon)	  common	  to	  at	  least	  two	  trees	  will	  be	  assigned	  a	  con-‐

sensus	  value.	  The	  probability	  of	  any	  mutaNon	  affecNng	  that	  parNNon	  is	  1-‐(consensus	  
value).Example:	  if	  a	  given	  branch	  is	  shared	  by	  12	  among	  16	  trees	  (e.g.,	  4	  populaNons	  of	  4	  in-‐
dividuals	  each),	  any	  mutaNon	  affecNng	  that	  branch	  will	  be	  accepted	  with	  a	  probability	  of	  0.25.	  
A	  branch	  shared	  by	  all	  trees	  will	  never	  be	  mutated.

§ OPERATOR – If	  operator	  is	  set	  to	  BLIND,	  a	  mutaNon	  breaking	  a	  consensus	  won’t	  be	  applied	  and	  the	  
tree	  will	  remain	  unchanged	  unNl	  the	  next	  mutaNon	  (at	  generaNon	  i+1).	  If	  operator	  is	  set	  to	  SUPER-
VISED,	  the	  operator	  will	  search	  for	  candidate	  mutaNons	  that	  don’t	  break	  any	  consensus.	  If	  no	  such	  
candidate	  exists,	  no	  mutaNon	  is	  performed	  and	  the	  tree	  will	  remain	  unchanged	  unNl	  the	  next	  gen-‐
eraNon.

§ NPOP – The	  number	  of	  populaNons	  (sets).	  Set	  to	  4	  by	  default.
§ NIND – The	  number	  of	  individuals	  (trees)	  within	  each	  populaNon	  (set).	  Set	  to	  4	  by	  default.
§ TOLERANCE – The	  CONSENSUS	  command	  constrains	  how	  shared	  branches	  are	  modified.	  The	  TOLER-

ANCE	  parameter	  avoids	  parNNons	  to	  become	  "frozen",	  i.e.,	  inaccessible	  to	  mutaNons.	  The	  TOLERANCE 
parameter	  helps	  avoiding	  to	  be	  trapped	  in	  a	  possible	  local	  opNmum.	  Set	  to	  0.5	  by	  default.Example:	  
With	  "strict	  consensus"	  and	  a	  tolerance	  of	  0.1,	  any	  branch	  shared	  by	  all	  trees	  is	  anyway	  mutated	  with	  
a	  probability	  of	  0.1.

§ HYBRIDIZATION – At	  each	  generaNon,	  there	  is	  a	  probability	  (between	  [0,	  1]	  and	  set	  to	  0.1	  by	  de-‐
fault)	  that	  all	  sub-‐opNmal	  individuals	  from	  one	  random	  populaNon	  are	  not	  mutated	  but,	  instead,	  are	  
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recombined	  with	  one	  individual	  from	  another	  populaNon;	  sub-‐opNmal	  individuals	  from	  other	  popu-‐
laNons	  experience	  the	  normal	  mutaNon	  procedure.

§ SELECTION – The	  method	  used	  to	  control	  death	  /	  survival	  of	  individuals	  :
o RANK – We	  implement	  a	  rank	  selecNon	  similar	  to	  that	  described	  in	  (Lewis	  1998,	  Mol.	  Biol.	  

Evol.	  15,	  277-‐283).	  The	  individual	  having	  the	  highest	  lnL	  is	  automaNcally	  allowed	  to	  leave	  
k=0.25*NIND	  offspring	  (i.e.,	  copies	  of	  itself)	  in	  the	  next	  generaNon.	  Then,	  each	  individual	  is	  
assigned	  a	  probability	  p	  of	  leaving	  an	  offspring	  as	  a	  funcNon	  of	  its	  posiNon	  in	  a	  list	  in	  which	  
individuals	  are	  ranked	  by	  their	  score.	  The	  probability	  p	  for	  the	  ith	  individual	  of	  leaving	  an	  off-‐
spring	  to	  the	  next	  generaNon	  is	  equal	  to:

o TOURNAMENT – Two	  individuals	  are	  drawn	  randomly	  from	  the	  populaNon	  of	  n	  individuals,	  and	  
one	  offspring	  is	  produced	  from	  the	  individual	  with	  higher	  score.	  Both	  trees	  are	  then	  placed	  
back	  into	  the	  maNng	  populaNon,	  and	  the	  whole	  process	  is	  repeated	  unNl	  n	  offspring	  have	  
been	  generated.

o REPLACEMENT – Two	  individuals	  are	  drawn	  randomly	  from	  the	  populaNon	  of	  n	  individuals	  
and	  two	  copies	  of	  the	  beTer	  individual	  are	  returned	  to	  the	  maNng	  pool	  (parents	  are	  dis-‐
carded).	  The	  process	  is	  repeated	  sn	  Nmes,	  where	  s	  is	  the	  strength	  of	  the	  selecNon	  (1.0	  by	  de-‐
fault),	  then	  the	  offspring	  populaNon	  is	  generated	  as	  an	  exact	  copy	  of	  the	  post-‐selecNon	  par-‐
ent	  populaNon.

o IMPROVE –	  Only	  those	  individuals	  that	  have	  scores	  beTer	  than	  that	  of	  the	  best	  tree	  from	  the	  
previous	  generaNon	  are	  kept.	  Each	  individual	  that	  fails	  this	  test	  is	  discarded	  and	  replaced	  by	  a	  
copy	  of	  the	  current	  best	  individual.	  This	  is	  the	  default	  selecNon	  method.	  

o KEEPBEST – Only	  the	  best	  individual	  of	  each	  populaNon	  is	  kept,	  others	  are	  replaced	  by	  a	  
copy	  of	  it.

§ RECOMBINATION – Each	  counter-‐selected	  sub-‐opNmal	  individual	  has	  a	  probability	  p	  (between	  [0,	  1]	  
and	  set	  to	  0.1	  by	  default)	  to	  recombine	  with	  a	  beTer	  individual	  in	  the	  populaNon.	  RecombinaNon	  is	  
performed	  by	  exchanging	  subtrees	  defined	  by	  one	  of	  the	  idenNcal	  taxa	  parNNons	  in	  the	  two	  parental	  
trees	  (i.e.,	  one	  internal	  branch	  that	  defines	  subtrees	  including	  the	  same	  taxa	  but	  with	  potenNally	  
different	  sub-‐topologies).	  If	  no	  common	  branch	  exists,	  the	  offspring	  is	  defined	  as	  a	  copy	  of	  the	  best	  
individual.	  A	  recombinaNon	  event	  can	  be	  viewed	  as	  a	  large	  number	  of	  simultaneous	  topological	  mu-‐
taNons.	  The	  exact	  procedure	  depends	  on	  the	  selecNon	  scheme:

o RANK – RecombinaNon	  is	  not	  available	  under	  that	  selecNon	  scheme.
o TOURNAMENT – With	  a	  probability	  p,	  the	  offspring	  set	  aker	  a	  tournament	  is	  not	  a	  copy	  the	  

individual	  with	  higher	  score	  but	  a	  recombinaNon	  between	  the	  two	  trees	  that	  have	  been	  ini-‐
Nally	  drawn	  for	  tournament.

o REPLACEMENT – With	  a	  probability	  p,	  only	  one	  (instead	  of	  two)	  copy	  of	  the	  beTer	  individual	  
is	  returned	  to	  the	  maNng	  pool.	  The	  second	  individual	  returned	  is	  a	  recombinaNon	  between	  
the	  two	  trees	  that	  have	  been	  iniNally	  drawn.

o IMPROVE –	  Each	  individual	  that	  does	  not	  have	  a	  score	  beTer	  than	  that	  of	  the	  best	  tree	  from	  
the	  previous	  generaNon	  has	  a	  probability	  p	  of	  of	  leaving	  an	  offspring	  by	  recombining	  with	  the	  
current	  best	  individual.	  

o KEEPBEST – Each	  individual	  that	  does	  not	  have	  a	  score	  beTer	  than	  that	  of	  the	  best	  current	  
individual	  has	  a	  probability	  p	  of	  of	  leaving	  an	  offspring	  by	  recombining	  with	  the	  current	  best	  
individual.

§ NCORE – The	  number	  of	  cores/processors	  assigned	  for	  parallel	  processing.	  Different	  populaNons	  
will	  be	  assigned	  to	  different	  cores.	  Set	  to	  1	  by	  default	  (no	  parallelizaNon).	  WARNING:	  this	  parameter	  
should	  be	  considered	  in	  combinaNon	  with	  the	  PARALLEL parameter	  (in	  REPLICATES).	  It	  is	  advised	  to	  
leave	  the	  NCORE	  parameter	  to	  1	  when	  you	  perform	  replicates	  with	  parallelizaNon.

§ OPERATORAPPLIEDTO – IND is	  the	  default
o STEP – At	  each	  step	  of	  the	  heurisNc,	  a	  single	  mutaNon	  operator	  is	  selected	  and	  applied	  to	  

each	  tree	  of	  each	  populaNon.
o POP – At	  each	  step	  of	  the	  heurisNc,	  each	  populaNon	  is	  separately	  assigned	  a	  mutaNon	  opera-‐

tor	  (i.e.,	  that	  operator	  is	  applied	  to	  all	  individuals	  within	  a	  populaNon).
o IND – At	  each	  step	  of	  the	  heurisNc,	  each	  individual	  is	  separately	  assigned	  a	  mutaNon	  opera-‐

tor.
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2. EVALUATION –	  By	  default,	  MetaPIGA	  evaluates	  trees	  with	  the	  maximum	  likelihood	  criterion	  using	  a	  single	  rate	  
matrix	  R	  for	  the	  TREE,	  the	  JC	  model	  and	  no	  rate	  heterogeneity.	  Note	  that	  if	  the	  dataset	  is	  parNNoned	  with	  
charsets,	  some	  parameters	  (RATEPARAM, DISTSHAPE, PINV)	  can	  be	  overridden	  with	  the	  SPECIFICPARTPARAM	  
command	  for	  each	  parNNon.
• RATE –	  The	  rate	  matrix	  R	  (by	  default,	  MetaPIGA	  use	  one	  R	  for	  the	  TREE):

§ BRANCH – NOT AVAILABLE YET - A	  different	  rate	  matrix	  R	  is	  used	  for	  each	  branch.	  
§ TREE –	  A	  single	  rate	  matrix	  R	  is	  used	  across	  the	  whole	  tree.

• DATATYPE=CODON –	  This	  token	  defines	  that	  nucleoNdes	  in	  this	  data	  set	  should	  be	  interpreted	  as	  codons.	  The	  
token	  has	  to	  be	  followed	  by	  the	  CODONRANGE{first_position-last_position} token,	  where	  ‘first_position’	  
and	  ‘last_position’	  define	  the	  range	  of	  nucleoNde	  indexes	  that	  will	  be	  interpreted	  as	  codons.

• MODEL –	  Depending	  on	  the	  datatype	  (DNA	  or	  PROTEIN	  or	  STANDARD),	  the	  default	  subsNtuNon	  model	  is	  JC,	  
POISSON,	  or	  GTR2,	  respecNvely.	  You	  can	  set	  subsNtuNon	  models	  with:

§ GTR – General-‐Time-‐Reversible	  model	  for	  nucleoNdes.
§ HKY85 – Hasegewa-‐Kishimo-‐Yano	  1985	  model	  (nucleoNdes).
§ TN93 – Tamura-‐Nei	  1993	  model	  (nucleoNdes).
§ K2P – Kimura's	  2	  Parameter	  model	  (nucleoNdes).
§ JC – Jukes	  Cantor	  1969	  model	  (nucleoNdes).
§ GTR20 –	  General-‐Time-‐Reversible	  model	  for	  proteins.
§ WAG –	  Wheland	  and	  Goldman	  model	  (proteins).
§ JTT –	  Jones-‐Taylor-‐Thornton	  model	  (proteins).
§ DAYHOFF –	  Dayhoff	  model	  (proteins).
§ VT –	  Variable	  Time	  subsNtuNon	  matrix	  (proteins).
§ BLOSUM62 –	  BLOSUM62	  (BLOcks	  of	  amino	  acid	  SUbsNtuNon	  Matrix)	  subsNtuNon	  matrix	  (proteins).
§ CPREV –	  Chloroplast	  reversible	  subsNtuNon	  model	  (proteins).
§ MTREV –	  Reversible	  mitochondrial	  subsNtuNon	  model	  (proteins).
§ RTREV –	  RtREV	  subsNtuNon	  matrix	  (proteins).
§ MTMAM –	  Mtmam	  model	  (for	  mitochondrial	  data)	  (proteins).
§ POISSON –	  Poisson	  model	  (proteins).
§ GTR2 –	  General-‐Time-‐Reversible	  model	  for	  standard	  binary	  data.
§ ECM –	  Empirical	  codon	  model	  for	  codon	  data.
§ GY –	  Goldman-‐Yang	  model	  for	  codon	  data.

• RATEPARAM –	  Set	  the	  values	  of	  each	  parameter	  of	  the	  rate	  matrix	  R.
§ A | B | C | D | E	  – The	  five	  parameters	  that	  can	  be	  set	  with	  GTR.	  Set	  to	  0.5	  by	  default.
§ K – The	  kappa	  parameter	  of	  K2P	  and	  HKY85.	  Set	  to	  0.5	  by	  default.
§ K1 |	  K2	  – The	  2	  parameters	  of	  TN93	  (respecNvely	  K1 are	  transiNons	  between	  purines,	  and	  K2	  

transiNons	  between	  pyrimidines).	  Set	  to	  0.5	  by	  default.
§ AR | AN | AD | … | WY | WV | YV	  – The	  189	  parameters	  that	  can	  be	  set	  for	  GTR20.	  They	  

correspond	  to	  the	  upper	  right	  triangle	  of	  the	  GTR	  subsNtuNon	  matrix,	  with	  the	  20	  amino	  acids	  or-‐
dered	  by	  alphabeNcal	  order	  of	  their	  3-‐leTer	  names	  (A	  R	  N	  D	  C	  Q	  E	  G	  H	  I	  L	  K	  M	  F	  P	  S	  T	  W	  Y	  V).	  For	  ex-‐
ample,	  A<-‐>R	  rate	  is	  set	  using	  AR	  parameter	  (RA	  will	  not	  be	  recognized).	  Set	  to	  0.5	  by	  default.

• AAFREQ –	  Used	  for	  empirical	  protein	  models	  with	  unequal	  equilibrium	  state	  frequencies	  (EMPIRICAL	  by	  
default).

§ EMPIRICAL –	  Equilibrium	  amino-‐acid	  frequencies	  are	  fixed	  to	  the	  empirical	  values	  reflecNng	  esN-‐
mates	  of	  the	  corresponding	  model.

§ ESTIMATED –	  	  Equilibrium	  amino-‐acid	  frequencies	  are	  fixed	  to	  those	  observed	  in	  the	  dataset.
• DISTRIBUTION –	  The	  rate	  heterogeneity	  (none	  by	  default).

§ NONE –	  No	  rate	  heterogeneity
§ GAMMA –	  	  Rate	  heterogeneity	  following	  a	  Gamma	  distribuNon.	  The	  number	  of	  rate	  categories	  (4	  by	  

default)	  and	  shape	  parameter	  alpha	  (default=1)	  can	  be	  defined.
• DISTSHAPE - Shape	  parameter	  (alpha)	  of	  the	  gamma	  distribuNon.	  Set	  to	  1.0	  by	  default.
• PINV – ProporNon	  of	  invariable	  sites	  (between	  0	  and	  1).	  Set	  to	  0	  (no	  invariant)	  by	  default.

3. SPECIFICPARTPARAM –	  Specific	  evaluaNon	  parameters	  can	  be	  set	  for	  each	  charset	  separately	  if	  the	  dataset	  is	  
parNNoned.	  If	  no	  SPECIFICPARTPARAM	  is	  defined	  for	  a	  given	  parNNon,	  parameters	  defined	  with	  the	  EVALUATION	  
command	  will	  be	  used.
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• PARTNAME –	  The	  name	  of	  the	  parNNon	  to	  which	  	  the	  parameters	  apply.	  ATTENTION:	  the	  parNNon	  name	  
must	  always	  be	  defined	  before	  RATEPARAM,	  DISTSHAPE	  and	  PINV.

• RATEPARAM –	  Set	  the	  value	  of	  each	  parameter	  of	  the	  rate	  matrix	  R.
§ A | B | C | D | E	  – The	  five	  parameters	  that	  can	  be	  set	  with	  GTR.	  Set	  to	  0.5	  by	  default.
§ K – The	  kappa	  parameter	  of	  K2P	  and	  HKY85.	  Set	  to	  0.5	  by	  default.
§ K1 |	  K2	  – The	  2	  parameters	  of	  TN93	  (respecNvely	  K1 are	  transiNons	  between	  purines,	  and	  K2	  

transiNons	  between	  pyrimidines).	  Set	  to	  0.5	  by	  default.
§ AR | AN | AD | … | WY | WV | YV	  – The	  189	  parameters	  that	  can	  be	  set	  for	  GTR20.	  They	  

correspond	  to	  the	  upper	  right	  triangle	  of	  the	  GTR	  subsNtuNon	  matrix,	  with	  the	  20	  amino	  acids	  or-‐
dered	  by	  alphabeNcal	  order	  of	  their	  3-‐leTer	  names	  (A	  R	  N	  D	  C	  Q	  E	  G	  H	  I	  L	  K	  M	  F	  P	  S	  T	  W	  Y	  V).	  For	  ex-‐
ample,	  A<-‐>R	  rate	  is	  set	  using	  AR	  parameter	  (RA	  will	  not	  be	  recognized).	  Set	  to	  0.5	  by	  default.

• DISTSHAPE - Shape	  parameter	  (alpha)	  of	  the	  gamma	  distribuNon.	  Set	  to	  1.0	  by	  default.
• PINV – ProporNon	  of	  invariable	  sites	  (between	  0	  and	  1).	  Set	  to	  0	  (no	  invariant)	  by	  default.

4. OPTIMIZATION –	  For	  configuring	  intra-‐step	  opNmizaNon	  frequencies,	  algorithm	  and	  targets.	  There	  are	  5	  ways	  of	  
choosing	  when	  MetaPIGA	  opNmizes	  the	  tree	  during	  a	  heurisNc.	  With	  NEVER,	  no	  opNmizaNon	  algorithm	  is	  applied.	  
With	  ENDSEARCH,	  final	  trees	  are	  opNmized	  at	  the	  end	  of	  the	  heurisNc.	  With	  CONSENSUSTREE,	  only	  the	  final	  con-‐
sensus	  tree	  built	  using	  all	  replicates	  is	  opNmized	  (when	  perfomring	  single	  searches,	  i.e.	  one	  single	  replicate,	  no	  
consensus	  is	  built	  and	  no	  intra-‐step	  opNmizaNon	  of	  target	  parameters	  is	  performed).	  With	  STOCH(p),	  with	  p	  
between	  [0.01,	  1],	  there	  is	  a	  probability	  p	  at	  each	  step	  to	  opNmize	  the	  tree.	  With	  DISC(s),	  trees	  will	  be	  opN-‐
mized	  every	  s	  steps.	  Note	  that	  (1)	  with	  STOCH	  and	  DISC,	  opNmizaNon	  of	  the	  final	  trees	  is	  also	  performed	  at	  the	  
end	  of	  the	  heurisNc	  (hence,	  at	  the	  end	  of	  each	  replicate	  if	  mulNple	  replicates	  are	  performed)	  and	  (2)	  with	  END-
SEARCH,	  STOCH	  and	  DISC,	  the	  final	  consensus	  tree	  is	  also	  opNmized	  when	  mulNple	  replicates	  are	  
performed.You	  can	  also	  set	  :
• ALGO –	  Set	  the	  algorithm	  used	  for	  intra-‐step	  opNmizaNon.

§ GA – GeneNc	  algorithm.	  Simple	  GA	  without	  recombinaNon:	  each	  tree	  to	  be	  opNmized	  is	  copied	  7	  
Nmes	  and	  that	  populaNon	  of	  8	  individuals	  is	  experiencing	  mutaNons	  (of	  targets,	  see	  below).	  Selec-‐
Non	  is	  performed	  with	  IMPROVE (see	  above).	  The	  GA	  is	  stopped	  when	  the	  likelihood	  remains	  un-‐
changed	  for	  200	  steps	  (generaNons).

§ POWELL – NOT AVAILABLE YET - DirecNon	  set	  (Powell’s)	  method	  in	  mulNdimensions,	  using	  golden	  
secNon	  search	  to	  bracket	  a	  minimum	  of	  the	  likelihood	  funcNon,	  and	  Brent’s	  method	  to	  isolate	  the	  
minimum.

§ DFO – NOT AVAILABLE YET - DerivaNve-‐Free	  OpNmizaNon.	  The	  method	  used	  is	  a	  trust-‐region	  
algorithm	  that	  employs	  interpolaNon	  models	  of	  degree	  at	  most	  2	  to	  build	  a	  model	  of	  the	  objecNve	  
funcNon.	  The	  models	  are	  constructed	  using	  Newton	  fundamental	  polynomials.

• TARGET –	  Set	  the	  targets	  of	  the	  opNmizaNon	  procedure.	  
§ BL – Branch	  lengths.
§ R – Parameter(s)	  of	  the	  rate	  matrix	  R	  (not	  relevant	  with	  Jukes	  Cantor	  model).
§ GAMMA – Shape	  parameter	  alpha	  of	  the	  gamma	  distribuNon	  (only	  relevant	  when	  rate	  heterogeneity	  

is	  used).
§ PINV – ProporNon	  of	  invariable	  sites	  (only	  relevant	  when	  invariant	  sites	  are	  used).
§ APRATE – Among-‐ParNNon	  rate	  variaNon	  (relaNve	  branch	  lengths	  are	  only	  relevant	  when	  the	  data-‐

set	  is	  parNNoned	  into	  charsets).
5. STARTINGTREE –	  Method	  used	  to	  generate	  the	  starNng	  tree(s)	  for	  the	  heurisNc.	  When	  using	  starNng	  trees	  gen-‐

erated	  by	  NK	  or	  LNJ	  (see	  below),	  a	  model	  (and	  potenNally	  rate	  heterogeneity	  distribuNon	  and	  proporNon	  of	  in-‐
variable	  sites)	  must	  also	  be	  set	  for	  compuNng	  the	  distance	  matrix.
• GENERATION –	  By	  default,	  MetaPIGA	  uses	  Loose	  Neighbor	  Joining	  Trees	  (LNJ)	  as	  starNng	  trees.

§ NJ –	  StarNng	  trees	  are	  built	  using	  the	  Neighbor	  Joining	  method	  (Saitou	  &	  Nei	  1987).
§ LNJ(range) –	  Loose	  Neighbor	  Joining.	  Range	  is	  a	  percentage	  value,	  that	  must	  be	  greater	  than	  0	  

and	  smaller	  than	  1.	  StarNng	  trees	  have	  pseudo-‐random	  topologies	  based	  on	  the	  Neighbor	  Joining	  
algorithm.	  The	  classical	  NJ	  method	  joins	  2	  nodes	  having	  minimal	  rate-‐corrected	  distance.	  Here,	  un-‐
der	  LNJ,	  a	  list	  containing	  the	  (range x (NTax x NTax-1)/2) smaller	  distances	  will	  be	  built	  
and	  two	  nodes	  will	  be	  randomly	  selected	  from	  it.Branch	  lengths	  are	  computed	  normally	  using	  the	  
Neighbor	  Joining	  method	  (Saitou	  &	  Nei	  1987).If	  the	  range parameter	  is	  close	  to	  0,	  the	  LNJ	  tree	  will	  
be	  similar	  to	  the	  neighbor	  joining	  tree;	  if	  it’s	  close	  to	  1,	  the	  tree	  will	  exhibit	  essenNally	  a	  random	  to-‐
pology.
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§ RANDOM –	  StarNng	  trees	  have	  random	  topologies	  and	  random	  branch	  lengths.	  No	  distance	  matrix	  is	  
used,	  so	  you	  can’t	  choose	  a	  subsNtuNon	  model	  or	  rate	  distribuNon	  or	  proporNon	  of	  invariable	  sites.	  
The	  random	  topology	  is	  generated	  by	  starNng	  with	  a	  “root”	  node	  with	  three	  branches	  ending	  each	  
with	  an	  ‘open	  slot’.	  We	  know	  the	  list	  of	  available	  T	  taxa	  and	  we	  know	  that	  the	  number	  of	  internal	  
nodes	  in	  the	  final	  tree	  will	  be	  (T-‐2-‐root).	  The	  tree	  generator	  cycles	  through	  the	  list	  of	  open	  slots.	  
Each	  Nme	  an	  open	  slot	  is	  visited,	  there	  is	  a	  probability	  p=0.5	  to	  fill	  the	  slot	  either	  with	  one	  of	  the	  
available	  taxa	  or	  with	  one	  of	  the	  available	  internal	  nodes	  (connected	  to	  two	  new	  branches,	  each	  
ending	  with	  an	  open	  slot).	  An	  internal	  node	  is	  always	  added	  if	  only	  one	  open	  slot	  remains.	  The	  algo-‐
rithm	  stops	  when	  all	  internal	  nodes	  and	  taxa	  have	  been	  incorporated.	  	  Branch	  lengths	  are	  drawn	  
from	  an	  exponenNal	  distribuNon	  (with	  λ=1),	  and	  shiked	  by	  0.001	  (such	  that	  the	  minimum	  value	  is	  
0.001	  and	  the	  mean	  is	  1.001).

§ GIVEN –	  User	  tree(s).	  If	  your	  NEXUS	  file	  contains	  a	  TREE	  block	  (and	  the	  command	  GIVEN	  is	  used),	  and	  
if	  you	  selected	  SA	  or	  HC	  as	  the	  heurisNc	  opNon,	  the	  first	  tree	  in	  the	  tree	  block	  will	  be	  loaded	  and	  
used	  as	  starNng	  tree.	  If	  you	  selected	  CP	  as	  the	  heurisNc	  opNon	  with	  NPOP	  populaNons,	  the	  NPOP	  first	  
trees	  in	  the	  TREE	  block	  will	  be	  loaded	  (one	  tree	  per	  populaNon).	  If	  you	  selected	  GA	  as	  the	  heurisNc	  
opNon,	  the	  NIND	  first	  trees	  in	  the	  TREE	  block	  will	  be	  loaded	  (one	  tree	  per	  individual).	  More	  opNons	  
for	  imporNng	  user	  starNng	  trees	  are	  available	  in	  the	  GUI	  (see	  point	  5.3.4.	  in	  the	  manual	  above).

• MODEL –	  Depending	  on	  the	  datatype	  (DNA	  or	  PROTEIN	  or	  STANDARD),	  the	  default	  subsNtuNon	  model	  to	  
generate	  distance	  matrices	  is	  JC,	  POISSON,	  or	  GTR2,	  respecNvely.	  You	  can	  set	  subsNtuNon	  models	  with	  :

§ GTR – General-‐Time-‐Reversible	  model	  for	  nucleoNdes.
§ HKY85 – Hasegewa-‐Kishimo-‐Yano	  1985	  model	  (nucleoNdes).
§ TN93 – Tamura-‐Nei	  1993	  model	  (nucleoNdes).
§ K2P – Kimura's	  2	  Parameter	  model	  (nucleoNdes).
§ JC – Jukes	  Cantor	  1969	  model	  (nucleoNdes).
§ GTR20 –	  General-‐Time-‐Reversible	  model	  for	  proteins.
§ POISSON –	  Poisson	  model	  (proteins).
§ GTR2 –	  General-‐Time-‐Reversible	  model	  for	  standard	  binary	  data.
§ NONE - No	  distance	  matrix.	  

• DISTRIBUTION –	  The	  rate	  heterogeneity	  (none	  by	  default)	  
§ NONE –	  No	  rate	  heterogeneity.
§ GAMMA –	  Rate	  heterogeneity	  following	  a	  Gamma	  distribuNon.	  The	  number	  of	  rate	  categories	  is	  fixed	  

to	  4	  but	  the	  shape	  parameter	  alpha	  (default=0.5)	  can	  be	  defined.
• PINV –	  ProporNon	  of	  invariable	  sites	  (between	  0	  and	  1).	  Set	  to	  0	  (no	  invariant)	  by	  default.	  If	  PINV	  >	  0,	  the	  

total	  number	  of	  sites	  is	  adjusted	  to	  have	  distances	  equal	  to	  the	  mean	  number	  of	  subsNtuNons	  over	  variable	  
sites	  only.

• PI –	  Base	  composiNon	  of	  invariant	  sites	  (used	  only	  if	  PINV	  >	  0).
§ EQUAL –	  The	  invariant	  sites	  will	  have	  base	  composiNon	  equal	  to	  0.25.
§ ESTIMATED –	  The	  invariant	  sites	  base	  composiNon	  is	  set	  to	  the	  average	  base	  composiNon	  across	  all	  

sequences.
§ CONSTANT –	  (Default)	  The	  invariant	  sites	  base	  composiNon	  is	  set	  to	  the	  average	  base	  composiNon	  of	  

the	  site	  which	  are	  constant.
6. OPERATORS	  –	  Sets	  the	  operators	  used	  to	  generate	  new	  soluNon	  trees.	  You	  can	  list	  more	  than	  one	  operator,	  and	  

some	  can	  have	  specific	  parameters.	  
• SELECTION This	  keyword	  can	  be	  set	  to:	  

§ ORDERED -	  Selected	  operators	  are	  chosen	  one	  aker	  another.	  
§ RANDOM - (Default)	  Selected	  operators	  are	  randomly	  drawn.	  
§ FREQLIST - Selected	  operators	  are	  drawn	  following	  probabiliNes	  defined	  in	  FREQUENCIES.	  

• If	  OPERATORS	  parameter	  is	  not	  set,	  MetaPIGA	  uses	  the	  following	  operators	  by	  default:	  NNI,	  BLMINT, 
TXS(2), STS(2).	  	  Available	  operators	  are:

§ NNI (NEAREST-NEIGHBOR INTERCHANGE) - Two	  grand-‐children	  branches	  of	  a	  random	  internal	  
node	  are	  swapped.

§ SPR (SUBTREE PRUNING AND REGRAFTING) – Removes	  a	  branch	  from	  the	  tree	  with	  a	  subtree	  at-‐
tached	  to	  it	  and	  re-‐graks	  the	  subtree	  elsewhere.

§ TBR (TREE-BISECTION-RECONNECTION)	  – Breaks	  a	  branch	  and	  reconnects	  each	  of	  the	  two	  sub-‐
trees	  on	  a	  random	  branch.	  
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§ TXS (TAXA SWAP) - Swaps	  a	  given	  number	  of	  randomly-‐chosen	  leaves	  (defined	  between	  paren-‐
theses).	  The	  value	  for	  this	  operator	  is	  a	  number	  between	  2	  and	  the	  number	  of	  leaves.	  You	  can	  also	  
set	  the	  parameter	  to	  ALL	  (swap	  all	  leaves)	  or	  RANDOM	  (swap	  a	  random	  number	  of	  leaves).	  If	  you	  set	  a	  
number	  smaller	  than	  2,	  2	  leaves	  will	  be	  permuted.	  If	  you	  set	  a	  number	  greater	  than	  the	  number	  of	  
leaves,	  ALL	  leaves	  will	  be	  permuted.	  Default	  parameter	  is	  2.

§ STS (SUBTREE SWAP) – By	  default,	  swaps	  two	  randomly-‐chosen	  internal	  nodes	  (i.e.,	  subtrees	  
that	  contain	  more	  than	  one	  leaf).	  If	  the	  parameter	  is	  set	  to	  RANDOM	  instead	  of	  2,	  the	  whole	  tree	  will	  
be	  divided	  into	  a	  random	  number	  of	  subtrees,	  and	  all	  of	  them	  will	  be	  permuted.

§ BLM (BRANCH LENGTH MUTATION) – Randomly	  changes	  the	  length	  of	  a	  randomly-‐chosen	  branch	  
by	  mulNplying	  the	  parameter’s	  value	  of	  the	  previous	  generaNon	  by	  a	  random	  number	  drawn	  from	  an	  
exponenNal	  distribuNon	  (with	  λ=2),	  and	  shiked	  by	  0.5	  (such	  that	  the	  minimum	  value	  is	  0.5	  and	  the	  
mean	  is	  1).

§ BLMINT (BRANCH LENGTH MUTATION ONLY ON INTERNAL BRANCHES) – Randomly	  changes	  the	  
length	  or	  a	  randomly-‐chosen	  internal	  branch	  by	  mulNplying	  the	  parameter’s	  value	  of	  the	  previous	  
generaNon	  by	  a	  random	  number	  drawn	  from	  an	  exponenNal	  distribuNon	  (with	  λ=2),	  and	  shiked	  by	  
0.5	  (such	  that	  the	  minimum	  value	  is	  0.5	  and	  the	  mean	  is	  1).

§ RPM (RATE PARAMETERS MUTATION) –	  Randomly	  changes	  the	  R	  matrix	  values	  by	  mulNplying	  the	  
value	  of	  the	  previous	  generaNon	  by	  a	  random	  number	  drawn	  from	  an	  exponenNal	  distribuNon	  (with	  
λ=2),	  and	  shiked	  by	  0.5	  (such	  that	  the	  minimum	  value	  is	  0.5	  and	  the	  mean	  is	  1).	  Parameter	  for	  this	  
operator	  is	  the	  number	  of	  R	  elements	  to	  change	  (1	  or	  ALL).	  

§ GDM (GAMMA DISTRIBUTION MUTATION) –	  Randomly	  changes	  the	  alpha	  parameter	  of	  the	  Gamma	  
distribuNon	  by	  mulNplying	  the	  parameter’s	  value	  of	  the	  previous	  generaNon	  by	  a	  random	  number	  
drawn	  from	  an	  exponenNal	  distribuNon	  (with	  λ=2),	  and	  shiked	  by	  0.5	  (such	  that	  the	  minimum	  value	  
is	  0.5	  and	  the	  mean	  is	  1).	  Only	  available	  when	  gamma-‐distribuNon	  rate	  heterogeneity	  has	  been	  se-‐
lected.

§ PIM (PROPORTION OF INVARIANT MUTATION) –	  Randomly	  changes	  the	  proporNon	  of	  invariables	  
sites	  by	  mulNplying	  the	  parameter’s	  value	  of	  the	  previous	  generaNon	  by	  a	  random	  number	  drawn	  
from	  a	  normal	  distribuNon	  (with	  mean=1	  and	  SD=	  0.5).	  The	  resulNng	  mulNplier	  is	  rejected	  if	  ≤	  
0.4.Only	  available	  when	  proporNon	  of	  invariable	  sites	  has	  been	  selected.

§ APRM (AMONG-PARTITION RATE MUTATION) –	  Randomly	  changes	  the	  among-‐parNNon	  rates	  for	  
relaNve	  branch	  lengths	  by	  mulNplying	  the	  parameter’s	  value	  of	  the	  previous	  generaNon	  by	  a	  random	  
number	  drawn	  from	  a	  normal	  distribuNon	  (with	  mean=1	  and	  SD=	  0.5).	  The	  resulNng	  mulNplier	  is	  re-‐
jected	  if	  ≤	  0.4.Only	  available	  when	  the	  dataset	  is	  parNNoned	  with	  “charsets”.

7. FREQUENCIES - Used	  to	  set	  the	  frequencies	  of	  operators,	  using	  operator(frequency).
8. DYNAMICFREQ – Operators	  set	  to	  dynamic	  have	  their	  probabiliNes	  of	  use	  automaNcally	  adjusted	  at	  every	  'inter-‐

val'	  to	  reflect	  their	  relaNve	  contribuNons	  to	  score	  improvements	  (the	  probability	  of	  using	  a	  specific	  operator	  is	  
increased	  or	  decreased,	  if	  its	  contribuNon	  to	  the	  score	  improvement	  is	  increased	  or	  decreased,	  respecNvely).You	  
can	  set	  some	  parameters	  for	  dynamic	  frequencies:
• DYNOPERATORS	  –	  The	  list	  of	  operators	  is	  set	  to	  dynamic.
• DINT –	  Interval	  (in	  number	  of	  steps)	  used	  to	  recompute	  the	  frequencies.	  Set	  to	  100	  by	  default.
• DMIN –	  Frequencies	  can't	  be	  decreased	  under	  the	  lower	  bond	  .	  Set	  to	  0.04	  by	  default.

9. SETTINGS	  –	  Some	  miscellaneous	  MetaPIGA	  seMngs	  
• REMOVECOL – Set	  to	  NONE by	  default,	  treaNng	  gaps	  ('-‐')	  as	  N	  (A	  or	  C	  or	  T	  or	  G)	  in	  nucleoNde	  datasets,	  or	  as	  

X	  (any	  amino	  acid)	  in	  protein	  datasets,	  or	  as	  ?	  (0	  or	  1)	  in	  standard	  datasets.	  	  Can	  be	  set	  either	  to	  GAP, for	  
removing	  every	  column	  containing	  a	  gap	  ('-‐'),	  or	  to	  NGAP	  	  for	  removing	  every	  column	  containing	  a	  gap	  or	  a	  
N/X/?	  in	  nucletoNde/protein/standard	  datasets.

• DIR –	  Defines	  the	  whole	  path	  where	  the	  Results	  folder	  will	  be	  placed.	  By	  default,	  results	  folders	  are	  put	  in	  a	  
‘MetaPIGA	  results’	  folder	  in	  your	  home	  directory	  (e.g.	  ‘My	  documents’	  in	  Windows).	  If	  you	  use	  the	  DIR 
command	  in	  a	  Nexus	  file,	  you	  MUST	  put	  the	  folder	  name	  between	  quotes.

• LABEL –	  Defines	  the	  name	  of	  the	  Results	  folder	  for	  output	  files.	  Changing	  the	  label	  changes	  the	  Results	  
folder	  name	  but	  not	  the	  nexus	  file	  name.	  The	  Results	  folder	  will	  be	  placed	  into	  the	  directory	  defined	  with	  
the	  DIR	  command.	  The	  Result	  folder	  is	  named	  with	  its	  label	  followed	  by	  the	  date	  (year-‐month-‐day)	  and	  
followed	  by	  the	  Nme	  (hour_min_sec)	  at	  the	  which	  the	  search	  was	  started.	  This	  allows	  for	  easy	  differenNa-‐
Non	  of	  results	  performed	  at	  different	  Nmes	  on	  the	  same	  dataset.	  If	  you	  use	  the	  LABEL command	  in	  a	  Nexus	  
file,	  you	  MUST	  put	  the	  label	  name	  between	  quotes.
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• GRID – NOT AVAILABLE YET - MetaPIGA	  will	  run	  through	  a	  GRID	  using	  the	  XtremWeb-‐CH	  middleware	  
(see	  hTp://www.xtremwebch.net/).	  You	  must	  specify	  the	  server	  address	  (e.g.	  
SERVER=HTTP://ADDRESS:8080),	  your	  idenNfier	  on	  the	  GRID	  (CLIENT	  command)	  and	  the	  idenNfier	  of	  the	  
MetaPIGA	  module	  on	  the	  GRID	  (MODULE	  command).	  Note	  that	  when	  MetaPIGA	  runs	  on	  a	  GRID,	  it	  does	  not	  
generate	  any	  log	  file	  (LOG command	  is	  ignored).	  GRID	  running	  is	  disabled	  by	  default.

10. OUTGROUP –	  Sets	  any	  number	  of	  taxa	  that	  will	  form	  the	  outgroup	  (all	  other	  taxa	  are	  in	  the	  ingroup).	  Operators	  
will	  never	  mix	  up	  taxa	  between	  the	  outgroup	  and	  the	  ingroup.	  The	  tree	  is	  rooted	  between	  outgroup	  and	  ingroup.

11. DELETE 	  –	  Sets	  any	  number	  of	  taxa	  that	  will	  be	  removed	  from	  the	  analysis.
12. CHARSET – Defines	  a	  charset	  ;	  you	  must	  use	  a	  different	  CHARSET command	  for	  each	  charset	  to	  be	  defined.	  For	  

each	  one,	  you	  must	  give	  its	  NAME and	  a	  list	  of	  character	  posiNons	  with	  SET.	  For	  defining	  a	  range	  of	  character	  po-‐
siNons,	  you	  can	  use	  2	  posiNons	  separated	  by	  ‘-‘	  (like	  60-125),	  and	  potenNally	  add	  ‘/’	  and	  the	  interval	  size.	  For	  
example	  60-125/3	  will	  take	  posiNons	  60, 63, 66, 69, 72, …, 120, 123.	  	  Charsets	  can	  be	  defined	  as	  
the	  combinaNon	  of	  other	  charsets	  (defined	  higher	  in	  the	  METAPIGA	  block)	  or	  by	  the	  combinaNon	  of	  charset(s)	  
and	  	  character	  list.

13. EXCLUDE 	  –	  Sets	  any	  number	  of	  charsets	  that	  will	  be	  excluded	  from	  the	  analysis.	  A	  charset	  is	  defined	  by	  2	  charac-‐
ter	  posiNons	  (like	  60-125),	  or	  can	  be	  defined	  with	  the	  CHARSET	  command.

14. PARTITION 	  –	  Divides	  the	  data	  matrix	  in	  charsets	  and	  compute	  likelihood	  separately	  for	  each	  charset.	  A	  charset	  
is	  defined	  by	  2	  character	  posiNons	  (like	  60-125),	  or	  can	  be	  defined	  with	  the	  CHARSET	  command.

15. STOPAFTER 	  –	  Sets	  the	  stop	  criterion	  of	  the	  heurisNc.	  Any	  number	  of	  condiNons	  can	  be	  set	  and	  each	  one	  can	  be	  
necessary	  or	  sufficient.	  The	  heurisNc	  stops	  when	  any	  of	  the	  sufficient	  condiNons	  is	  met	  or	  when	  all	  necessary	  
condiNons	  are	  met.	  CondiNons	  are	  sufficient	  by	  default	  and	  can	  be	  switch	  to	  necessary	  using	  the	  NECESSARY	  
command.	  If	  STOP AFTER	  is	  not	  set,	  the	  heurisNc	  will	  not	  start	  but	  starNng	  tree(s)	  will	  be	  generated.
• STEPS - Defines	  a	  maximum	  number	  of	  generaNons.
• TIME – 	  Allows	  to	  stop	  the	  heurisNc	  aker	  a	  given	  amount	  of	  Nme	  (in	  hours).
• AUTO – AUTO	  will	  stop	  the	  heurisNc	  if	  the	  best	  soluNon	  evaluaNon	  doesn’t	  improve	  more	  than	  a	  given	  per-‐

centage	  (AUTOTHRESHOLD	  parameter,	  set	  to	  0.0001	  by	  default,	  i.e.	  0.01%)	  at	  any	  step	  during	  the	  defined	  
number	  of	  steps.

• CONSENSUS – CONSENSUS	  can	  only	  be	  used	  with	  Consensus	  Pruning	  (metaGA	  heurisNc),	  and	  will	  stop	  the	  
heurisNc	  when	  the	  mean	  relaNve	  error	  among	  consensus	  trees	  (INTERVAL	  parameter,	  set	  to	  10	  by	  default)	  
remains	  below	  a	  given	  value	  (set	  with	  MRE	  parameter,	  0.03	  by	  default).	  Each	  consensus	  tree	  is	  built	  using	  all	  
trees	  from	  all	  populaNons	  in	  a	  generaNon.	  As	  consensus	  trees	  tend	  not	  to	  vary	  much	  between	  2	  consecuNve	  
generaNons,	  the	  user	  is	  advised	  to	  allow	  several	  generaNons	  between	  sampling	  (with	  GENERATION	  parame-‐
ter,	  set	  to	  5	  by	  default).

• NECESSARY – The	  following	  condiNons	  can	  be	  switched	  to	  necessary	  :	  STEPS,	  TIME,	  AUTO,	  CONSENSUS.
16. REPLICATES	  –	  The	  number	  of	  Nmes	  the	  metaheurisNc	  will	  be	  repeated	  with	  the	  same	  dataset.	  At	  the	  end,	  a	  

majority-‐rule	  consensus	  tree	  is	  produced.	  By	  default,	  only	  one	  tree	  is	  produced.
• AUTOSTOP – Adds	  a	  stop	  condiNon	  to	  replicates’	  generaNon.	  

§ NONE - By	  default,	  there	  is	  no	  stop	  condiNon,	  so	  a	  given	  number	  of	  replicates	  is	  produced.	  You	  can	  
set	  the	  number	  of	  replicates	  produced	  with	  RNUM	  parameter.

§ MRE(error) – This	  opNon	  allows	  MetaPIGA	  to	  stop	  producing	  replicates	  when	  the	  Mean	  RelaNve	  
Error	  among	  consecuNve	  consensus	  trees	  remains	  below	  a	  given	  value.	  Error	  is	  a	  value	  between	  
[0,1]	  set	  to	  0.05	  by	  default.	  
o RMIN – The	  minimum	  number	  of	  replicates	  to	  produce.	  Default	  value	  is	  100.
o RMAX – The	  maximum	  number	  of	  replicates	  to	  produce.	  Default	  value	  is	  10	  000.
o INTERVAL – The	  number	  of	  consecuNve	  consensus	  trees	  (set	  to	  10	  by	  default)	  that	  must	  

have	  a	  MRE	  below	  a	  given	  value	  before	  stopping	  the	  producNon	  of	  replicates	  .
• PARALLEL – The	  number	  of	  replicates	  to	  be	  run	  in	  parallel	  (i.e.,	  simultaneously).	  By	  default,	  this	  parameter	  

is	  set	  to	  1	  (no	  parallel	  processing).	  	  WARNING:	  It	  is	  strongly	  advised	  not	  to	  use	  a	  value	  greater	  than	  the	  
number	  of	  processors/cores	  available	  on	  the	  running	  computer.	  WARNING2:	  this	  parameter	  must	  be	  con-‐
sidered	  in	  combinaNon	  with	  the	  parameter	  NCORE	  (i.e.,	  the	  number	  of	  cores/processors	  assigned	  for	  paral-‐
lel	  processing	  WITHIN	  a	  replicate).	  For	  example,	  if	  you	  use	  a	  computer	  with	  4	  cores,	  set	  the	  NCORE	  parame-‐
ter	  to	  1	  and	  the	  PARALLEL	  parameter	  to	  4,	  such	  that	  each	  replicate	  will	  use	  a	  single	  core	  (i.e.,	  4	  replicates	  
will	  be	  run	  simultaneously).	  If	  you	  use	  a	  computer	  with	  8	  cores,	  you	  can	  set	  the	  NCORE	  parameter	  to	  2	  and	  
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the	  PARALLEL	  parameter	  to	  4,	  such	  that	  each	  replicate	  will	  use	  two	  cores	  AND	  4	  replicates	  will	  be	  run	  simul-‐
taneously.

17. LOG	  –	  Set	  the	  log	  files	  you	  want	  as	  output.	  They	  can	  give	  you	  valuable	  informaNon	  on	  what	  happens	  during	  the	  
execuNon	  of	  MetaPIGA.	  Be	  aware	  that	  selecNng	  the	  log	  files	  indicated	  with	  asterisks	  can	  (i)	  significantly	  slow	  
down	  the	  search	  and	  (ii)	  fill	  up	  large	  amount	  of	  disk	  space	  (with	  the	  magnitude	  of	  slow-‐down	  /	  fill-‐up	  approxi-‐
mately	  indicated	  by	  the	  number	  of	  asterisks).	  	  All	  log	  files	  are	  wriTen	  in	  the	  results	  folder.	  
• DATA - Working	  matrix	  log	  file	  -‐	  Prints	  the	  compressed	  dataset	  to	  'Dataset.log'.	  The	  last	  row	  contains	  the	  

weight	  of	  each	  column,	  i.e.,	  the	  number	  of	  Nmes	  this	  data	  paTern	  is	  found	  in	  the	  data	  matrix.	  .
• DIST – Distance	  matrix	  log	  file	  -‐	  Prints	  the	  distance	  matrix	  to	  'Distances.log'.
• TREESTART – StarNng	  Trees	  log	  file	  -‐	  Prints	  the	  starNng	  tree(s)	  to	  'StarUngTrees.tre'.
• HEUR (*) – HeurisNc	  search	  log	  file	  -‐	  The	  'HeurisUc.log'	  file	  records	  details	  about	  each	  step	  of	  the	  heuris-‐

Nc	  used.	  It	  requires	  disk	  space	  between	  500	  bytes	  and	  1	  Kb	  per	  iteraNon	  of	  the	  heurisNc.
• TREEHEUR (**) – HeurisNc	  search	  tree	  file	  -‐	  'The	  'HeurisUc.tre'	  file	  records	  each	  tree	  found	  at	  each	  step	  

of	  the	  heurisNc.	  It	  requires	  disk	  space	  of	  +/-‐	  130	  bytes	  per	  taxa	  per	  tree	  recorded.	  For	  example,	  recording	  
trees	  for	  a	  dataset	  of	  200	  taxa,	  using	  the	  metaGA	  heurisNc	  with	  4	  populaNons	  of	  4	  individuals	  each,	  for	  a	  
fixed	  amount	  of	  5000	  generaNons	  will	  generate	  a	  file	  of	  about	  1.5Gb	  for	  each	  replicate	  produced.

• CONSENSUS (**) –Consensus	  log	  file	  -‐	  The	  ‘Consensus.log'	  file	  records	  consensus	  at	  each	  step	  of	  Consen-‐
sus	  Pruning.	  It	  requires	  disk	  space	  between	  100	  bytes	  and	  1Kb	  per	  taxa	  and	  per	  consensus	  recorded.	  For	  
example,	  recording	  consensus	  for	  a	  dataset	  of	  200	  taxa,	  using	  the	  metaGA	  heurisNc	  for	  a	  fixed	  number	  of	  
5000	  generaNons	  will	  generate	  a	  file	  between	  100Mb	  and	  1Gb	  for	  each	  replicate	  produced..

• OPDETAILS (***) - Operators	  log	  file	  -‐	  The	  'OperatorsDetails.log'	  file	  records	  details	  about	  the	  opera-‐
tors	  used.	  It	  requires	  disk	  space	  of	  200-‐300	  bytes	  per	  taxa	  per	  operaNon.	  For	  example,	  recording	  operator	  
details	  for	  a	  dataset	  of	  200	  taxa,	  using	  the	  metaGA	  heurisNc	  with	  4	  populaNons	  of	  4	  individuals	  each,	  for	  a	  
fixed	  number	  of	  5000	  generaNons	  will	  generate	  a	  file	  between	  1.7Gb	  and	  3.4Gb	  for	  each	  replicate	  pro-‐
duced.

• OPSTATS –	  Operator	  staNsNcs	  file	  –	  The	  ‘OperatorsStaNsNcs.log’	  file	  records	  operator	  staNsNcs	  at	  the	  end	  
of	  a	  search,	  as	  well	  as	  each	  Nme	  the	  operator	  frequencies	  have	  been	  updated.

• ANCSEQ (*) - Ancestral	  sequences	  log	  file	  -‐	  At	  the	  end	  of	  the	  heurisNc,	  the	  ancestral	  sequence	  probabili-‐
Nes	  of	  each	  internal	  node	  are	  printed	  into	  the	  'AncestralSequences.log'	  file.

• PERF (*) – The	  ‘Performances.log’	  file	  records	  the	  amount	  of	  Nme	  (in	  nanoseconds)	  used	  by	  each	  op-‐
erator.	  It	  requires	  disk	  space	  of	  +/-‐	  1	  Kb	  per	  iteraNon	  of	  the	  heurisNc.
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8.	  	  	  Appendix	  2:	  Using	  the	  Stochastic	  Simulated	  Annealing	  (SSA)

Select the ‘Simulated Annealing’ radio button in the ‘Heuristic’ window to see all available parame-
ters (Fig. 31). We implemented 14 highly-parametrized cooling schedules in MetaPIGA, including 
the ‘Lundy’ cooling schedule [26, 43]. The user can control all cooling schedule parameters: the 
starting temperature computation method, the maximum acceptance probability, the temperature 
decrease frequency, and the possibility of ‘reheating’. Changing the cooling schedule in the ‘Heu-
ristic’ window will change the set of available parameters. Note that several of these cooling sched-
ules are quite similar to each others such that we might reduce the number of available schedules in 
future versions of MetaPIGA.

Fig. 31: The ‘Heuristic’ window with ‘Simulated annealing’ selected and the ‘Lundy schedule’ settings.

In each of the 14 available cooling schedules, Ti is the temperature after i decrements, and Γ is the 
maximum number of temperature decrements before reinitialization to T0 (the starting temperature). 
Except for the ‘Lundy schedule’, T0 (and TΓ when relevant) is computed as follows:

T0 =
−ΔL
lnA0

 	
 	
 and 	
 	
 TΓ =
−ΔL
lnAΓ

	
 	
 	
 	


where ΔL is the upper limit of likelihood change, whereas A0 and AΓ are, respectively, the initial 
and final ‘maximal acceptance parameter’, i.e., the maximal probability to accept a tree with a 
worse likelihood. Hence, A0 and AΓ define the initial and final temperature values, and the cooling 
schedule defines how the temperature is decreased between these two values. The various cooling 
schedules (and corresponding curve equations of temperature change) are listed below, with A0 and 
AΓ defined by the user. The cooling schedule requires defining the number of iterations (i.e., the 
number of times operators have been used to generate a change in the tree) after which a tempera-
ture decrement is performed. The user can choose either (i) the number of iterations (steps) or (ii) 
the number of successes (generating better trees) or failures (not generating better trees) required 
before a temperature decrement is performed. As decreasing the temperature translates into reject-
ing more easily trees with lower likelihoods, a reheating parameter allows defining when the tem-
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perature is reinitialized to T0 to facilitate crossing of valleys in likelihood space. Finally, the method 
for defining ΔL (required for computing the initial and final temperatures) is also chosen by the user 
either as the percentage of the Likelihood of the Neighbor-Joining tree or as an estimate generated 
by burn-in. In the latter case, each mutation operator is applied 20 times on the starting tree and the 
maximum difference of likelihood observed is used as ΔL. The table below shows the cooling 
schedules implemented in metaPIGA.

Cooling	  schedule Corresponding	  curve	  equa4on curve

	  Lundy	  

	  (with	  c	  and	  α	  as	  
user-‐defined	  pa-‐
rameters)

Ti+1 =
ΔL
1+ iβ

	  	
 with	  β =
c

(1−α )n +α
− ln NJT

m

β	  is	  the	  cooling	  rate	  (its	  value	  is	  <	  1)	  and	  is	  computed	  using	  parameters	  
from	  the	  dataset:	  n is the number of sequences, m is the number of 
aligned columns, c and α have values between 0 and 1, and lnNJT 
is the log likelihood of the neighbour-joining tree.

	  Ra4o-‐Percent	  

	  (with	  parameter	   )
Ti+1 = δTi 	
 with δ<1

	  Fast	  Cauchy Ti =
T0
i
	  	  	  	  

	  Boltzmann 	  Ti =
T0
ln i

	  Geometric	  

	  (with	  parameter	   )
Ti = T0α

i 	
 with α<1

	  Linear 	  	  Ti = T0 − i
(T0 − TΓ )

Γ

	  Triangular 	  Ti = T0
T0
TΓ

⎛
⎝⎜

⎞
⎠⎟

i /Γ

	  Polynomial Ti =
(T0 − TΓ )(Γ +1)

Γ(i +1)
+ T0 −

(T0 − TΓ )(Γ +1)
Γ
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	  Transcendental	  
	  -‐	  exponen4al Ti = TΓ +

(T0 − TΓ )
1+ e3(i−

Γ
2 )

	  Transcendental
	  -‐	  logarithmic 	  Ti = T0e

−
i
Γ

⎛
⎝⎜

⎞
⎠⎟
2
ln
T0
TΓ

	  Transcendental
	  -‐	  periodic Ti =

(T0 − TΓ )
2

1+ cos iΠ
Γ

⎛
⎝⎜

⎞
⎠⎟
+ TΓ

	  Transcendental
	  -‐	  smoothed	  peri-‐
odic

	  Ti =
(T0 − TΓ )

4
2 + cos8iΠ

Γ
⎛
⎝⎜

⎞
⎠⎟
e
−
i
2Γ

	  Hyperbolic
	  -‐	  tangent Ti =

(T0 − TΓ )
2

1− tanh(10i
Γ

− 5)⎛
⎝⎜

⎞
⎠⎟
+ TΓ

	  Hyperbolic
	  -‐	  cosinus

Ti =
(T0 − TΓ )
cosh 10iΓ

+ TΓ
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9.	  	  	  Appendix	  3:	  A	  simple	  introduction	  to	  ML	  phylogeny	  inference

9.1.  Introduction 

	
 The Maximum Likelihood approach to phylogeny inference is based on the use of a substitu-
tion model that allows computing the likelihood of a tree, i.e., the probability that its topology and 
branch lengths (given the model parameters, such as instantaneous substitution rates, state frequen-
cies, gamma distribution of rates, etc) yielded the observed data. Substitution models used in the 
field of phylogeny inference are Markovian: the conditional probability distribution of future states 
depends only upon the present state, i.e., the probability of change of a character from state i to state 
j does not depend on the history of the character before state i. We also assume that the Markov 
process is homogeneous (i.e., the instantaneous substitution probabilities are identical everywhere 
in the tree) and time-reversible (the substitution rate i → j is identical to the substitution rate j → i). 
Given time reversibility, the likelihood of a tree does not depend on where that tree is rooted. In 
other words, trees are unrooted and the choice of outgroup taxa (orienting the tree in time) is an as-
sumption performed by the user. Finally, we assume that different characters (i.e., different posi-
tions in the multiple alignment) evolve independently, such that the likelihood of every character 
can be computed separately.

9.2.  The General-Time-Reversible (GTR) Model 

	
 The easiest way to represent a model is by using a matrix Q in which each element Qij is the 
instantaneous substitution rate from state i to state j. We use here the example of a 4x4 matrix for 
nucleotide substitutions, but the concept is the same for amino-acid substitutions or codon substitu-
tions (but the corresponding matrices are then 20x20 and 64x64, respectively).

Q =

−(µaπC + µbπG + µcπT ) µaπC µbπG µcπT

µgπ A −(µgπ A + µdπG + µeπT ) µdπG µeπT

µhπ A µiπC −(µhπ A + µiπC + µ fπT ) µ fπT

µ jπ A µkπC µlπG −(µ jπ A + µkπC + µlπG )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

where πi is the equilibrium frequency of state i, and μ is the mean instantaneous substitution rate. 
The latter is modified with relative rate parameters a, b, ..., l specific to each possible substitution. 
However, as indicated above, we use time-reversible models, such that a=g, b=h, c=j, d=i, e=k, and 
f=l. The diagonal elements of the matrix make the sum of each line equal to zero.

The instantaneous substitution rate matrix Q can be decomposed into a rate matrix R and an equilib-
rium frequency matrix Π:

Q = R X Π	
	
 	
 	
 	
 	
 	
 Equation 2

where
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R =

− µa µb µc
µa − µd µe
µb µd − µ f
µc µe µ f −

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

	
 	
 	
 	
 Equation 3

and 

Π =

π A 0 0 0
0 πC 0 0
0 0 πG 0
0 0 0 πT

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	
 	
 	
 	
 Equation 4

The mean instantaneous substitution rate can be computed as follows:

µ =
1

π i ′Qiji≠ j

A,C ,T ,G∑
	
 	
 	
 	
 	
 Equation 5

where

′Q =

− aπC bπG cπT

aπ A − dπG eπT

bπ A dπC − fπT

cπ A eπC fπG −

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	
 	
 	
 Equation 6

9.3. Computing the likelihood of a tree 

	
 The principle for estimating the likelihood of a tree is based on computing the probability of a 
substitution from state i to state j (with i and j possibly identical) given the length vx of the branch x. 
Given that a nucleotide in a sequence can experience multiple substitutions through time, the prob-
ability of observing a substitution between two nodes is not a linear function of the branch length vx 
but takes the form:

p(t) = e−λt    	
 	
 	
 	
 	
 	
 Equation 7

where λ and t are the substitution rate and the time, respectively. Note that it is not possible to sepa-
rate λ and t because a branch can be long due to a long time and/or a large rate. In other words, the 
branch length is λt. 

When considering the GTR model, the equation takes the form

p(t) = eQt 	
 	
 	
 	
 	
 	
 Equation 8
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Where Q is the instantaneous substitution matrix (equation 1). The equation can be computed by 
using the eigenvectors and eigenvalues of the matrix.
Partitions are incorporated in the computation by multiplying t (in Equation 8) by Θp, i.e., the rela-
tive rate of partition p. Relative rates of partitions are optimized separately but each partition is 
weighted according to its size (S(p)), and the weighted average of among-partitions rates is con-
strained to 1, i.e., 

	
 S(p).Θ p
p

nPar

∑ = 1 	
 	
 	
 	
 	
 Equation 9

Let’s take a simple example. If the observed sequence data, and the tree to evaluate, are respec-
tively:

Taxon_1   ACCGTCATCAGG
Taxon_2   GCTATCGCCAGC
Taxon_3   ACCGTTATCAGG
Taxon_4   GCTGTCGTCAGG

             

v1 v2

v3 v4
v5

T2
T1

T3
T4

y x

Friday, April 23, 2010

the likelihood of that tree is the probability to generate the observed data given the substitution 
model. The process is performed separately for each position (each column in the alignment). Let’s 
consider the first position (underlined in the sequence alignment above). The states at the internal 
nodes X and Y are unknown. Imagine that both X and Y were of state A. Given that Taxa 1 and 3 ex-
hibit a A, and that Taxa 2 and 4 exhibit a G, the full probability of observing the first position given 
the tree is the Probability to: 

observe no change between Y(=A) and Taxon_1(=A) given branch length v1 
AND	
 	
 observe no change between Y(=A) and Taxon_3(=A) given branch length v3
AND	
 	
 observe a change from X(=A) to Taxon_2(=G) given branch length v2
AND	
 	
 observe a change from X(=A) to Taxon_4(=G) given branch length v4
AND	
 	
 observe no change from X(=A) to Y(=A) given branch length v5

In probabilistic terms, the full probability of observing states A, G, A, and G for, respectively, the 
sequences 1, 2, 3, and 4, GIVEN that the internal nodes X and Y exhibit the state A is: 

h(A,G,A,G⎮X=A,Y=A) = PAA(v1) . PAA(v3) . PAG(v2) . PAG(V4) . PAA(V5)	
 	
 Equation 10

However, we don’t know the unobserved states of the internal nodes, such that the combination 
considered above (X=Y=A) is only one possibility. Hence, we have to consider each possible com-
bination of states. In the simple tree above, there are only 2 internal nodes and 16 possibilities: 

X=A and Y=A	
 combination 1
X=A and Y=G	
 combination 2
X=A and Y=C	
 combination 3
...
X=T and Y=T	
 combination 16
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Hence, the full probability of generating the first position in the alignment above (i.e., states A, G, 
A, and G for, respectively, the sequences 1, 2, 3, and 4) is the sum of the probabilities of combina-
tions 1 to 16. In other words, the real (unobserved) states of the internal nodes corresponded to 
combination 1 or combination 2 .... or combination 16. In probabilistic terms, we therefore need to 
compute:

Prob(combination 1) + Prob(combination 2) + ... + Prob(combination 16)	
 	
 Equation 11

	
 where “Prob(combination 1)” is equation 10.

To generalize, the likelihood of observing the first position of the alignment above given the follow-
ing tree

seq1 ACCGTCATCAGG
seq2 GCTATCGCCAGC
seq3 ACCGTTATCAGG
seq4 GCTGTCGTCAGG

v1 v2

v3 v4
v5

T2
(G)

T1
(A)

T3
(A) T4

(G)

y x

 

h(A,G,A,G) = gxPxG(v 4)PxG(v 2) Pxy(v 5)PyA(v1)PyA(v 3)
y
!

x
!

P(t) = e
Rt

is (equation 12):

 

seq1 ACCGTCATCAGG
seq2 GCTATCGCCAGC
seq3 ACCGTTATCAGG
seq4 GCTGTCGTCAGG

v1 v2

v3 v4
v5

T2
(G)

T1
(A)

T3
(A) T4

(G)

y x

 

h(A,G,A,G) = gxPxG(v 4)PxG(v 2) Pxy(v 5)PyA(v1)PyA(v 3)
y
!

x
!

P(t) = e
Rt

Note the parameter gx in equation 12, which is the equilibrium frequency of state x.  

Finally, the likelihood of the tree given the full alignment is

L = Li
i
∏  	
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Equation 13

	
 where Li is the likelihood of position i.

To avoid the manipulation of exceedingly small values, it is much more convenient to compute the 
log likelihood of a tree as follows:

lnL = lnLi
i
∑ 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Equation 14

   Much additional information can be found in the references given in the ‘Background’ Section 
(Section 2) of this manual.
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