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1.	
  	
  	
  In	
  a	
  nutshell

	

 The development of heuristics implemented in robust application softwares has made large 
phylogeny inference a key step in most comparative studies involving molecular sequences. The 
choice of a phylogeny inference software is not only dictated by the raw performance (speed) of the 
algorithm(s) and of its (their) implementation, the availability of complex substitution models, and 
the accuracy of the resulting trees, but also by a combination of parameters pertaining to the ease-
of-use and the availability of specific functionalities.
	

 Here, we present the manual of MetaPIGA, a robust implementation of several stochastic 
heuristics for large phylogeny inference (under maximum likelihood), including a Random-Restart 
Hill Climbing, a Stochastic Simulated Annealing (SSA) algorithm, a classical Genetic Algorithm 
(GA), and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution 
models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA handles 
nucleic-acid and protein datasets as well as morphological (presence/absence) data. The benefits of 
the metaGA ([1] Lemmon & Milinkovitch 2002; PNAS, 99: 10516-10521) are as follows: (i) it 
resolves the major problem inherent to classical Genetic Algorithms (i.e., the need to choose 
between strong selection, hence, speed, and weak selection, hence, accuracy) by maintaining high 
inter-population variation even under strong intra-population selection, and (ii) it generates branch 
support values that approximate posterior probabilities.
	

 The software MetaPIGA also implements:
✓ Simple dataset quality control (testing for identical sequences and excessively ambiguous or 

excessively divergent sequences);
✓ Automated trimming of poorly aligned regions using the trimAl algorithm [2];
✓ The Likelihood Ratio Test, Akaike Information Criterion, and Bayesian Information Criterion for 

the easy selection of nucleotide and amino-acid substitution models that best fit the data;
✓ Ancestral-state reconstruction of all nodes in the tree;
✓ Codon models for the analysis of protein-coding nucleotide sequences;
✓ Faster Likelihood computation on Nvidia graphics cards;
✓ Automated stopping rules based on convergence statistics.
MetaPIGA provides high customization of heuristics’ and models’ parameters, manual batch file 
and command line processing. However, it also offers an extensive and ergonomic graphical user 
interface and functionalities assisting the user for dataset quality testing, parameters setting, 
generating and running batch files, following run progress, and manipulating result trees.
	

 MetaPIGA uses standard formats for data sets and trees, is platform independent, runs in 32- 
and 64-bits systems, and takes advantage of multiprocessor and/or multicore computers. Note 
that MetaPIGA allows the use of the  XtremWeb-CH infrastructure for distribution of multiple jobs 
on a Grid. 

	

 MetaPIGA is freely available to academics at www.metapiga.org and www.lanevol.org 
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2.	
  	
  	
  Background

Phylogeny inference allows, among others, detecting orthology/paralogy relationships among 
gene-family members (e.g., [3-6]), estimating divergence times and evolutionary rates (e.g., [7-9]), 
reconstructing ancestral sequences (e.g., [10-14]), identifying molecular characters constrained by 
purifying selection or which experienced positive selection (e.g., [15]), uncovering hidden 
biodiversity (e.g., [16]), and mapping the evolution of morphological, physiological, 
epidemiological, biogeographical, and even behavioral characters [17, 18]. Molecular phylogeny 
inference is now a mature science, and an important part of the maturation process pertained to the 
realization (since the late 1990’s) that the quest for the Holy Grail of THE absolute best tree should 
be abandoned for a much more meaningful goal: the inference of clades and trees robustness. Still, 
this objective remained intractable in practice because of (a) the NP-hard nature of optimality-
criterion-based phylogeny inference (i.e., no algorithm can solve it in polynomial time; [19, 20]) 
and (b) the large computing-time requirements when using complex substitution models (and rate 
heterogeneity across sites) in the framework of what has been identified as the probable most robust 
optimality criterion: Maximum Likelihood (ML; [21-23]; See Appendix 3 for an introduction to 
ML). Today large phylogeny inference is incorporated, across biological disciplines, as an essential 
step in most comparative studies involving nucleotide or protein sequences. This has been made 
possible thanks to both theoretical and practical developments.

First, one key advance that made large phylogeny inference tractable is the implementation in 
this field of stochastic heuristics with inter-step optimization, i.e., a family of approaches that 
existed for decades in physics and computer science and explore multidimensional solution spaces 
in a much more efficient manner than the older intra-step optimization hill-climbing methods. 
Indeed, in the latter, one prime parameter (typically, the topology of the tree) is modified and all 
other parameters are optimized before the new solution is evaluated whereas, in stochastic 
heuristics, all free parameters are optimized while the search proceeds. Inter-step optimization 
methods include Markov Chain Monte Carlo (MCMC) approximations of the Bayesian approach 
[24, 25], stochastic simulated annealing [26], and genetic algorithms [1, 27-30]. The efficiency of 
stochastic heuristics is quite counterintuitive but can be explained by several factors: (a) poorer 
solutions are accepted with a non-null probability (contrary to hill-climbing that strictly restricts 
moves toward better likelihood values) such that valleys in likelihood space can eventually be 
crossed; and (b), parameters are not over-optimized (e.g., starting and intermediate trees are 
generally largely sub-optimal, hence, optimizing model parameters on these trees is a clear example 
of over-fitting). In addition, we think that avoiding over-optimization at every topology evaluation 
generates a flatter likelihood-space shape, such that valleys are more easily crossed and local optima 
more easily escaped. This suggestion however requires further investigation.

Second, several stochastic methods have been incorporated into robust application softwares. 
The importance of that point should not be underestimated. For example, the success of Bayesian 
methods is probably due as much to its incorporation into robust and efficient software (e.g., 
MrBayes; [31]) as to the theoretical appeal of generating marginal posterior probabilities [25]. The 
software RaxML [32], enjoys deserved popularity because it is one of the fastest ML phylogeny 
inference programs available to date (despite that it does not incorporate stochastic methods) thanks 
to the implementation of approximations to rate heterogeneity across sites and smart computer 
science tricks speeding up likelihood computation: optimized parallel code and ‘Subtree Equality 
Vectors’ (i.e., the extension of character compression to the subtree level). Similarly, highly efficient 
parallel code has recently been implemented for the evaluation of phylogenies on graphics 
processing units (GPUs), resulting in 10 to 100-fold speed increase over an optimized CPU-based 
computation [33]. This efficient use of new hardware, existing stochastic heuristics (in this case, an 
MCMC approach in a Bayesian framework), and smart code parallelization for efficient harnessing 
of the hundreds of GPU processing cores allowed the authors to use a 60-state codon model on a 

MetaPIGA 3.0 manual    p4



dataset of 62 complete mitochondrial genomes. Note that MetaPIGA now implements GPU 
computation (since version 3.0b0).

The availability of multiple excellent softwares implementing different robust heuristics is 
clearly an asset for the end user: reliable results might be identified because they remain stable 
across softwares and methods. However, many users chose one single main software for their 
analyses, and this choice is sometimes dictated by availability of functionalities of importance (e.g., 
batch analyses, GTR nucleotide substitution model [34] and rate heterogeneity [35-37], possibility 
to partition data) but that do not pertain to the performances of the specific heuristic implemented. 
Finally, given that the need to infer large trees is critical in multiple biological disciplines, the non-
specialist can be baffled by the large number of available heuristics, parameters, and softwares, such 
that the most user-friendly tools are sometimes preferred even if more robust or more efficient (but 
less user-friendly) softwares are available. 

There is therefore a challenge to supply softwares that are both easy to use for the non-
specialist, provide flexibility for the specialist, and allow fast and robust inference for both. We 
hope MetaPIGA version 3 provides a solution to this conundrum.

3.	
  	
  	
  The	
  metaGA	
  algorithm	
  &	
  MetaPIGA

The Metapopulation Genetic Algorithm (MetaGA; [1]) is an evolutionary computation 
heuristic in which several populations of trees exchange topological information which is used to 
guide the Genetic Algorithm (GA) operators for much faster convergence. Despite the fact that the 
metaGA had initially been implemented in a simple and unoptimized software (metaPIGA-v1) 
together with simple nucleotide substitution models, an approximate rate heterogeneity method, and 
only a low number of functionalities, it has been suggested as one of the most efficient heuristics 
under the ML criterion. Furthermore, multiple metaGA searches provide an estimate of the posterior 
probability distribution of trees [1]. 
	

 The metaGA resolves the major question inherent to classical  GA approaches: should 
one use a soft or a stringent selection scheme? Indeed, strong selection produces good solu-
tions in a short computing time but tend to generate sub-optimal solutions around local op-
tima. Conversely, mild selection schemes considerably improve the probability to escape local 
optima and find better solutions, but greatly increase computing time. As the metaGA involves 
several parallel searches, initial  inter-population variation can be very high (especially if ran-
dom or pseudo-random starting trees are used), and somewhat maintained during the search, 
even under extreme intra-population selection.
	

 Although the metaGA has been shown to perform very well [1, 38, 39] it initially did not im-
plement complex substitution models, discrete Gamma rate heterogeneity, and the possibility to par-
tition data. Here, we present MetaPIGA version 3, a program in which we performed such an im-
plementation, both for nucleotide and protein data, together with a hill climbing, a classical Genetic 
Algorithm (GA), and a Stochastic Simulated Annealing (SSA) algorithm. MetaPIGA version 3 also 
implements dataset quality control, automated trimming of poorly aligned regions, criteria (Likeli-
hood Ratio Test, Akaike Information Criterion, and Bayesian Information Criterion) for the easy 
selection of nucleotide and amino-acid substitution models that best fit the data, ancestral-state re-
construction of nodes, Codon models for the analysis of protein-coding nucleotide sequences, faster 
Likelihood computation on Nvidia graphics cards, and automated stopping rules based on conver-
gence statistics. MetaPIGA can also be parallelized on a Grid of computers.
	

 MetaPIGA gives access both to high parameterization, as well as to an ergonomic interface 
and functionalities assisting the user for sound inference of large phylogenetic trees.
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4.	
  	
  	
  The	
  software	
  MetaPIGA

4.1.  Availability
The software MetaPIGA is freely  available to academics at www.metapiga.org , and is avail-

able for Windows, Mac OSX, and Linux. Note that, each time you launch MetaPIGA, it checks for 
the availability of updates. MetaPIGA will always request your authorisation to perform such an 
update. This manual is also available in the MetaPIGA help menu.

Disclaimer. MetaPIGA is  provided without warranty of any kind. The authors  and their institutions do not  warrant  guarantee, or 
make any representation regarding the use or the results of the program or manual in terms of their correctness, reliability, or other-
wise. In no case will the authors and their respective institutions be liable for any direct, special, indirect, incidental, consequential, 
or other damages arising from using the metaGA and/or any version of MetaPIGA and/or this manual  and/or any supporting material. 
MetaPIGA is freely available only to Academics. If you are working for a commercial company and are planning to use MetaPIGA, 
please, contact michel.milinkovitch -at- unige.ch

4.2.  Recommended citations
The Consensus Pruning (CP) and the Metapopulation Genetic Algorithm (metaGA) were 

originally described in the first reference below, whereas the version 2 of MetaPIGA (the software 
implementing the MetaGA and other heuristics) is described in the second. Hence, we would be 
grateful if you could cite these two references when publishing results produced with MetaPIGA 
version 3.

✓ Lemmon A.R. & M. C. Milinkovitch
The metapopulation genetic algorithm: an efficient solution for the problem of large phylogeny
estimation
Proceedings of the National Academy of Sciences (PNAS), USA, 99: 10516-10521 (2002)

✓ Helaers R. & M. C. Milinkovitch
MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic 
algorithm and other stochastic heuristics
BMC Bioinformatics 2010, 11: 379

4.3.  CPU, GPU, Operating Systems, and memory requirements
CPU & Operating Systems. As optimality-criterion phylogeny inference in general, and ML 

inference in particular, is a computer intensive endeavour, fast CPUs are always preferable, even 
when using powerful heuristics such as MC3 or the metaGA. Using a ranid frog dataset (provided 
with the software as one of the example datasets) of 64 taxa X 1976 nucleotides each, a typical 
metaGA run (4 populations of 4 individuals, and default parameter values) will take approximately 
2 minutes to complete under a simple model (Jukes-Cantor) and about  20 minutes under a complex 
model (GTR + gamma distributed rate heterogeneity) on a single core of a 2.27 GHz Intel Xeon 
processor (you can easily  reduce running time by distributing replicates on several cores, see be-
low). Hence, when using datasets of over 100 taxa and when performing replicates (to estimate pos-
terior probabilities of clades; see below), you should expect runs to last several hours. If you are 
experienced in the use of MrBayes [31], take as a rule of thumb that a thorough analysis using the 
MetaGA requires a running time similar to that of using MrBayes with the same dataset.

MetaPIGA is written in Java 1.6 such that the single code runs on 32 and 64-bits platforms 
under MacOS X, Linux, and Windows. We use the Java Multi-Threading technology to take advan-
tage of multiprocessor and/or multicore computers, such that some tasks can be run in parallel. As 
replicates are independent, they are particularly  prone to parallelization: different replicates can be 
assigned to any number of different  processor cores (typically 4 - 12 in most 2013 machines). In 
addition, the metaGA heuristic itself is well suited to parallel implementation because many proc-
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esses (mutations, selection, and likelihood computation) are independent across populations. Hence, 
different metaGA populations can be distributed to different processor cores. Parallelization of 
metaGA populations can be combined with parallelization of replicates (e.g., 16 cores allow run-
ning simultaneously 4 metaGA replicates with 4 populations treated simultaneously at each repli-
cate). Note that distributing different replicates to different cores is more efficient (in terms of com-
putation speed-up) than distributing different populations to different cores1. Hence, parallelization 
of populations usually  increases running speed by  about 0.3n whereas parallelization of replicates 
increases running speed by almost n (where n= the number of CPU cores you assigned to 
MetaPIGA).

 Computing on GPU (Graphics cards). Analyses of protein or codon datasets are particu-
larly long because of the high number of possible state substitutions (20x20 for amino-acid data; 
64x64 for Codon data). In such cases, performance can be substantially increased if likelihood 
computation is performed on GPUs (Graphics processing units), also called ‘Graphics cards’. These 
are devices that provide fine-grained parallelization. MetaPIGA version 3 can run on  CUDA-
capable graphics cards from Nvidia Corporation. The graphics card’s compute capability has to be 
at least 2.0. The list of CUDA-capable graphics cards can be found on the following web site: 
https://developer.nvidia.com/cuda-gpus. Note that the performances of GPUs are low for nucleotide 
sequence data, substantial for protein sequence data, and spectacular for codon sequence data.

In order to make use of the available supported graphics card, appropriate CUDA drivers have to be installed. The drivers 
and the installation instructions can be found on the following web site: 
https://developer.nvidia.com/cuda-toolkit-42-archive. Be sure to install the 4.2 Toolkit version and the drivers that come 
with that version of the CUDA Toolkit. MetaPIGA v.3 hasn’t been tested on the newer versions of the CUDA Toolkit.
If you’re using a Linux distribution with graphics card, prior to launching MetaPIGA, you must set the environment vari-
able that points to the CUDA library, like this:

export LD_PRELOAD={path to the CUDA library}:$LD_PRELOAD
Where {path to the CUDA library} points to the ‘libcuda.so’ CUDA library. 
For example on one of our machines this variable setting looks like this: 
export LD_PRELOAD=/usr/lib/nvidia-current/libcuda.so:$LD_PRELOAD

	
  
For best performances, the graphics card must have enough built-in memory (see the ‘memory’ 
sections below).

The Grid. If you are a user of the XtremWeb-CH infrastructure, you can use a Grid to per-
form your data analysis with coarse grained parallelization. This means that different replicates are 
computed on the different worker computers on the Grid. If you have 100 computers on your grid, 
your analysis will be about 100 times faster.

In order to use the grid, first you have to have an account on the XWCH. After you make an account, you have to ask the 
XtremWeb-CH support  to connect a MetaPIGA module to your account. When the MetaPIGA module is ready, you have to 
upload the MetaPIGA binaries to your MetaPIGA module. Provided with MetaPIGA is a small program that  uploads these 
binaries to the grid. This program is  available in the MetaPIGA base folder on your computer in the subfolder 
‘XWCH_bin_uploader’. You will  have to provide the ‘MetaPIGA 3.jar’ that is in the base MetaPIGA folder, your user 
identification number, the grid server address, and the MetaPIGA module ID. These informations can be found in your 
XtremWeb-CH interface. If you can’t  find them, consult with the XtremWeb-CH project people. Note that, every  time 
MetaPIGA is updated, you will have to upload the binaries  again in order to have the latest version of the MetaPIGA on the 
grid. For the user documentation, please, refer to the following web site:

http://www.xtremwebch.net/mediawiki/index.php/How_use

Memory. Computing and storing the likelihood of large trees require large amounts of 
Random-Access Memory (RAM). Note that 32-bits systems can allocate a maximum of ~2Gb of 
memory to the Java Virtual Machine (JVM), whereas 64-bits systems are limited only  by the 
amount of memory installed on the computer (the theoretical limit is 16 billions gigabytes). The 
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equation below allows calculating the number of Giga-bytes of free RAM  (i.e., RAM that must be 
available when your OS is running) you will need for using MetaPIGA:

 RAM (Gb) =
Tr ⋅ N ⋅ D ⋅C ⋅ S ⋅ Pr ⋅ 4

10243
  

where Tr is the number of trees used at each generation, N is the number of nodes in the tree (=2T-1, 
where T is the number of taxa), D is the number of data patterns2, C is the number of discrete cate-
gories of the gamma distribution (typically, 4), and S is the number of possible character states 
(S=4, S=20, and S=64 for DNA, protein, and Codon characters, respectively). Pr is the number of 
CPU cores assigned to the parallelization of replicates: doubling the number of CPU cores assigned 
to different replicates doubles the speed of the search but also doubles the amount of required 
RAM. 

The number of trees (Tr) used at each generation by MetaPIGA depends on the heuristic chosen:
✓ Tr = 3 for ‘Hill Climbing’ (HC) and for ‘Simulated Annealing’ (SA);
✓ Tr = I+1 for the ‘Genetic Algorithm’ (GA) under ‘Improve’, ‘Replacement’,  and ‘Keep the best’ selection 

schemes;
✓ Tr = I*2+1 for the ‘Genetic Algorithm’ (GA) under ‘Tournament’, and ‘Rank’ selection schemes;
✓ Tr = P*I+1 for the ‘Metapopulation Genetic Algorithm’ (MetaGA) under ‘Improve’, ‘Replacement’, and ‘Keep 

the best’ selection schemes;
✓ Tr = (P+1)(I+1) for the ‘Metapopulation Genetic Algorithm’ (MetaGA) under ‘Tournament’, and ‘Rank’ selec-

tion schemes with one CPU core;
✓ Tr = (2P)(I+1) for the ‘Metapopulation Genetic Algorithm’ (MetaGA) under ‘Tournament’, and ‘Rank’ selection 

schemes with more than one CPU core;
P is the number of populations and I is the number of individuals per populations.

For example, using a computer with 4 CPU cores, and using the metaGA (with ‘Improve’ Selection) 
with 4 populations of 4 individuals, and rate heterogeneity with 4 Gamma-rate categories on a DNA 
dataset of 120 taxa and 4000 nucleotides (hence, about 2500 data patterns, although that number 
can vary, depending on each specific dataset), will require about:

a. 2.4 Gb of RAM for a single core assigned to each replicate but 4 cores assigned to 4 simul-
taneous replicates;

b. 1.2 Gb of RAM  for 2 cores assigned to each replicate and 2 cores assigned to 2 simultaneous 
replicates.

Note that option a. will be significantly faster than option b. Also note that:
✓ The amount of RAM  computed above is a lower bound as the storage of the dataset itself can 

take a few hundreds Mb;
✓ An estimate of the amount of RAM  necessary  for your analysis is indicated in the parameter 

summary  panel of the main window (Fig. 2) as well as in the lower-left corner of the ‘Analysis 
settings’ window (Fig. 9 to 18), on the basis of the parameters you have chosen in that same 
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2 A data pattern is an aligned column with a specific combination of states. One pattern can occur several times within 
the same dataset. For example, the character columns 1, 8 & 9 below are identical, hence, their likelihoods are identical 
and must be computed only once (but used three times for computing the joint likelihood). Similarly, characters 3 & 7 
are identical. The example dataset below exhibits 9 characters but only 5 patterns. The number of data patterns is indi-
cated in the ‘MetaPIGA data matrix’ tab (see Fig. 3)

 Character-->1 2 3 4 5 6 7 8 9                  Pattern --> 1 2 3 4 5
Taxon1       A G T G C C T A A                  Taxon1      A G T G C
Taxon2       A G T G C C T A A                  Taxon2      A G T G C
Taxon3       T T T G C C T T T -> Compress ->   Taxon3      T T T G C
Taxon4       T T T G C C T T T                  Taxon4      T T T G C
Taxon5       T - T G C C T T T                  Taxon5      T - T G C
 Pattern --> 1 2 3 4 5 5 3 1 1                  Weight -->  3 1 2 1 2



window. In both windows, the estimate turns red if you exceed the amount of memory you allo-
cated to MetaPIGA.

As indicated in Figure 1a, you can choose the amount of RAM assigned to MetaPIGA in the menu: 
‘Tools’ ➙  ‘Memory Settings’). You will be prompted by  the program to do so if you experience an 
out-of-memory error during the use of MetaPIGA. The amounts of memory assigned, used, and 
available can be found in the menu ‘Help’ ➙ ‘System informations’ (Fig. 1b).

  
Fig. 1: The metaPIGA (a) Memory Settings  and (b) System Information windows

 Graphics card memory. For best performances, the graphics card must have enough built-in 
memory. To calculate the minimum amount of memory in megabytes, use the following formula:

RAMopt

GPU (Mb) =
12 ⋅C ⋅ D ⋅ S + 8 ⋅C ⋅ D + 16 ⋅C ⋅ S 2 + 8 ⋅C + 12 ⋅ D + 16 ⋅ S 2 + 16 ⋅ S

10242
.

Where D is the number of data patterns (see above), C is the number of discrete categories of the 
gamma distribution (typically, 4), and S is the number of possible character states (S=4, S=20, and 
S=64 for DNA, protein, and codon sequences respectively).
If the amount of available memory is less than that computed above, MetaPIGA will have to split 
the data into pieces before sending it to the GPU, which in turn degrades the performances of the 
GPU. To calculate the minimum of built-in GPU memory needed, use the following formula:

RAM min

GPU (Mb) =
8 ⋅C + 12 ⋅ D + 8 ⋅C ⋅ D + 16 ⋅ S + 384 ⋅C ⋅ S + 16 ⋅ S 2 + 16 ⋅C ⋅ S 2

10242
.
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5.	
  	
  	
  Using	
  MetaPIGA

5.1.  Summary
	

 MetaPIGA uses standard formats: reading and writing datasets in Nexus format [40] and trees 
in Newick format. Note that aligned datasets in Fasta format can also be imported in MetaPIGA. All 
search settings can be saved in a metaPIGA block incorporated into the Nexus file, allowing easy 
management and runs on distant servers. A Nexus file without a metaPIGA block will be correctly 
interpreted by MetaPIGA and will run with default parameters (but it will skip other programs 
blocks such as ‘Paup’ or ‘Assumptions’ blocks). Note that the command “Endblock”  often used in 
Paup data files is not a standard Nexus command and will not be recognized by MetaPIGA (please, 
use the standard Nexus command “END”  instead). The minimum requirements are a DATA block 
(defining the datatype, the number of taxa and the number of characters), including a MATRIX com-
mand (i.e., with the sequence data; if the matrix is in interleave form, please, indicate it in the DATA 
block) with each sequence beginning with the sequence name separated from the sequence itself by 
at least one space. Standard ambiguity characters are accepted (see below) and missing data (de-
fined by the ‘MISSING’ command; default is ‘?’) are automatically converted to ‘N’ (nucleotide se-
quences) or ‘X’ (amino-acid sequences). Gaps (defined by the ‘GAP’ command; default is ‘-’) can be 
removed (with the corresponding character in other taxa) or treated as ‘N’ (see Section 5.3). 

Example of Nexus file with nucleotide data.
#NEXUS
BEGIN DATA;
	

 DIMENSIONS NTAX=5 NCHAR=12;
	

 FORMAT DATATYPE=DNA interleave
	

 MISSING=? GAP=- ;
MATRIX
mysequence_T1  AGTGCCTGATTG
mysequence_T2  AGTGCCTGATCG
mysequence_T3  TTTGCCTG---G
mysequence_T4  TTTGCCTAATCG
mysequence_T5  T-TGCCTAATCG
;
END;

The standard ambiguity code for DNA sequences.

M = A or C
V = A or C or G (not T)
R = A or G
H = A or C or T (not G)
W = A or T
D = A or G or T (not C)
S = C or G
B = C or G or T (not A)
N = A or C or G or T

Example of Nexus file with protein data.
#NEXUS
BEGIN DATA;
	

 DIMENSIONS NTAX=5 NCHAR=12;
	

 FORMAT DATATYPE=PROTEIN interleave
	

 MISSING=? GAP=- ;
MATRIX
mysequence_S1  QSGT
mysequence_S2  RSGT
mysequence_S3  P-GK
mysequence_S4  RLGK
mysequence_S5  RLG-
;
END;

The standard ambiguity code for PROTEIN se-
quences.

B = N or D 
Z = Q or E 
J = I or L 
X = any amino-acid

	

 MetaPIGA can be run in command line (cf. end of ‘Section 5.2’, then jump directly to Sec-
tions 5.7 and 5.8 as well as Appendix 2), but it also offers an extensive graphical user interface 
(GUI) for access to:

✓ Dataset setting (Fig. 4-9) : defining and managing charsets; including/excluding taxa, characters, 
and charsets; defining and managing dataset partitions; changing nucleotide sequences to codon 
sequences and vice versa; 

MetaPIGA 3.0 manual    p10

http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html


✓ Analysis settings (Fig. 10-18): choosing and customizing heuristics; defining substitution models 
and their parameters; choosing starting-tree options; controlling operators; defining stop criteria 
and replicates, managing multi-core processing. 

All settings are associated with an interactive ‘mouse-over’ help system such that, if you are an 
experienced phylogeneticist, you probably don’t need this manual much ;). 
	

 MetaPIGA implements simple dataset quality controls (testing for the presence of identical 
sequences and for excessively ambiguous or excessively divergent sequences) and automated trim-
ming of poorly aligned regions using the trimAl algorithm [2]. MetaPIGA also implements statisti-
cal methods for selecting substitution models that best fits the data ([41]; and refs therein): the 
Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion. 
	

 The MetaPIGA GUI provides a detailed run window showing graphs specific to the corre-
sponding heuristic. For example,, for a metaGA search with replicates, the run window shows: (i) 
the current best likelihood progression of each population and (ii) the current topology, posterior 
probability values, and average branch lengths of the consensus tree. 
	

 Batch files are particularly useful for running sequentially a single data set under multiple dif-
ferent settings or several datasets with the same settings. MetaPIGA supports the use of batch files 
that can be either written manually (see Section 5.8) or generated using tools available in the GUI 
(see Section 5.7): datasets and their settings can be duplicated, settings can be “stamped” from one 
dataset to another, and multiple combinations of datasets and settings can be saved in a batch file 
that can be run either in the GUI (with various graphical information on search progress) or using 
command line.
	

 Input and result trees are manipulated in Newick format, but visualized graphically in the 
GUI, and can be exported for other programs. MetaPIGA also integrates a Tree Viewer that allows 
viewing, re-rooting, and printing trees as well as computing the likelihood of any tree (under any 
available substitution model) and optimizing its model parameters. Five other tools are imple-
mented: a Tree Generator (using the starting tree settings), an Ancestral State Reconstruction 
viewer (associated with the Tree Viewer), a Consensus Builder (using user-trees and/or trees saved 
in the ‘Tree Viewer’), a tool for computing Pairwise Distances, and a Memory Settings tool defin-
ing the maximum amount of memory allocated to the program. See section 5.9 for details.

5.2.  Launching MetaPIGA & opening a file
	

5.2.1.  Loading a file 
Double-clicking a ‘.nex’ file (on Windows and Mac OS X) launches MetaPIGA and opens the 
Nexus file. If it does not, launch MetaPIGA by double-clicking the application icon and open your 
NEXUS (or FASTA) file by clicking on the ‘Load Nexus file’ button  (Figs. 2 & 3) or by select-
ing in the menu: ‘File’ ➙ ‘Load a Data File (Nexus or Fasta format)’. Several Nexus files can be 
loaded sequentially using the Load Nexus File button/command but multiple files can also be 
dragged and dropped from the OS navigator to the left panel of the MetaPIGA main window (Fig. 
2). The upper-right and lower-right panels of the main window indicate the parameters and the data 
matrix, respectively, obtained from the corresponding Nexus/Fasta file (Fig. 2). The entry window 
gives access to a second tab (arrow in Fig. 2) that shows the compressed data matrix and indicates 
the number of data patterns and base frequencies. 
5.2.2.  Data quality control & alignment trimming 
Hitting the ‘scissor’ button ( Fig. 2) in the center of the main window will successively launch 
quality tests for:
✓ The presence of excessively ambiguous sequences: sequences with >40% ambiguities  (gaps and 

N/X) will be detected and  will be proposed to be automatically removed.
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✓ The presence of redundant sequences: groups of identical sequences will be detected and only 
one sequence (with the lowest number of ambiguities) will be kept for each such group3.

✓ The presence of excessively divergent sequences: if sequences generating large uncorrected 
pairwise distances (85% for proteins, 65% for nucleotide data, and 45% for standard binary data) 
are detected, a warning is given, suggesting to remove these sequences and to subsequently rea-
lign the dataset. MetaPIGA does not perform alignment, so you’ll have to realign your sequences 
using an alignment software such as ClustalW or CodonCode Aligner.

✓ Automated trimming of poorly aligned regions using the trimAl algorithm [2]: excessively 
gapped and/or divergent positions are put in a charset of excluded characters (but they can be 
easily re-included in the ‘Dataset settings’, see section 5.3).

Each of these 4 tests is also separately accessible in the 'dataset' menu.
	

 The trimAl algorithm has not yet been implemented for codon sequences in the MetaPIGA 
version 3.0.

Fig. 2: The MetaPIGA main window with three loaded datasets and the ‘ranoidea_1b’ dataset selected. The arrows 
indicate the memory required for running that dataset (under the current settings), the central button for data quality 
control & alignment trimming, and the second tab giving access to the compressed dataset, number of data patterns, 
and base frequencies.
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groups of identical sequences (seq.1+2+3 and seq.4+5). After running the test, MetaPIGA keeps, within each group, 
only the sequences with the lowest number of ambiguities (sequences 1 and 4).

Sequence1   A G T G C C N G A!
Sequence2   A G Y G C C T R A!! ! Sequence1   A G T G C C N G A
Sequence3   A N T N C - T G A!   --->! Sequence4   T T T G C C T - T
Sequence4   T T T G C C T - T
Sequence5   T - - G C C T A T 



The icons in the upper-left cor-
ner of the window (Fig. 3) are 
shortcuts to the main com-
mands from the ‘File’, 
‘Search’, ‘Batch’, and ‘Tools’ 
menus. Most of these functions 
are self-explanatory and are 
associated with an interactive 
‘mouse-over’ help system. We 
will however discuss below the 
major functionalities. Most 
commands can be called using 
a short-cut of type ‘Ctrl/Cmd+letter’ (e.g., ‘Ctrl/Cmd+L’ for opening a Nexus or Fasta file).

NOTE: COMMAND LINE LAUNCH. It is particularly useful to launch MetaPIGA in command line if you want to 
send jobs to a distant server. You must use the ‘mp_console’ executable (and not ‘MetaPIGA’). Simply type the com-
mand “mp_console” with the following arguments:

✓ [noupdate] : MetaPIGA will not check the MetaPIGA download server for an update;
✓ [nogui] : MetaPIGA will run without graphical interface (but textual progress), executing all files given in argument.
✓ [width=] : set the console width (default = 80). Necessary for progress bar display without GUI. 
✓ [silent] Launches MetaPIGA without any GUI or text progress. 
✓ [aFilename] : The Nexus/Fasta file that will be opened by MetaPIGA and executed if [nogui] is set. If several file-

names are given, they will be run sequentially as a batch. 
For example, to run sequentially two nexus files ‘file1.nex’ and ‘file2.nex’ withtout GUI under Windows, type: 
“mp_console.exe noupdate nogui file1.nex file2.nex”
Refer to ‘Section 5.8’ on how building batch files manually, and to ‘Appendix 2’ for the full list of MetaPIGA com-
mands that can be incorporated in Nexus files.

5.3.  [D] Dataset Settings
5.3.1 Overview
	

 The dataset settings are accessed by clicking on the button  or by selecting in the menu: 
‘Dataset’ ➙ ‘Dataset settings’. This window allows to:

✓ define and manage charsets;
✓ include/exclude taxa, characters, and charsets;
✓ define and manage dataset partitions;
✓ define outgroup sequences;
✓ define a range of Codons inside a nucleotide sequence.

This window is divided into two tabs. The first tab (Dataset) handles charsets, partitions, outgroups, 
and excluded taxa. The second (Codons) allows defining Codon characters in nucleotide sequences.
	

 The corresponding window for the ‘ranoidea_1b.nex’ file is shown below (Fig. 4). The 7 out-
group taxa and the 10 charsets were predefined (hence, recognized by the program) in the nexus file 
using a metaPIGA block as highlighted in green below. See Appendix 2 for the full list of 
MetaPIGA commands.
#NEXUS
BEGIN DATA;
!DIMENSIONS NTAX=111 NCHAR=3679;
!FORMAT DATATYPE=DNA interleave MISSING=? GAP=- ;
MATRIX
The data matrix is here in interleaved format
;
END;
BEGIN METAPIGA;

Fig. 3: The MetaPIGA main functionalities icons. These functionalities 
(and others) are also available through the ‘File’, ‘Dataset’, ‘Search’, 
‘Batch’, and ‘Tools’ menus. Between brackets: shortcut command letters.
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charset name=RAG1 set{1-555};
charset name=rhod1 set{556-870};
charset name=rhod4 set{871-1045};
charset name=Tyr set{1046-1579};
charset name=12V16 set{1580-3080};
charset name=16S set{3081-3679};
charset name=RAG_AmbigAlign set{67-84};
charset name=Tyr_AmbigAlign set{1211-1228};
charset name=12V16_Ambigalign set{1610-1615 1671-1684 1721-1762 1784-1801 1817-1867
! 1892-1900 1911-1915 1953-1999 2048-2055 2070-2086 2107-2116 2128-2199 2208-2219
! 2237-2262 2287-2304 2308 2324-2332 2349-2352 2363-2370 2378-2390 2411 2431-2454
! 2567-2611 2673-2700 2722-2728 2742-2831 2864-2884 2900-2988 3022-3080};
charset name=16S_AmbigAlign set{3090-3103 3128-3136 3149-3158 3318-3398 3438-3507 
! 3513-3527 3649-3679};
outgroup {1004NesTho 0986DenAur 1052HylAre 0987PhrVen 1006CerOrn 1082LepMel! 1037Telsp.};

end;

All commands can be performed with the GUI (instead of using commands in the Nexus file) as de-
scribed below.

5.3.2 The ‘Dataset’ tab
	

 Use the >> and << but-
tons to (i) transfer taxa in and 
out of the outgroup, (ii) 
exclude/include taxa,  (iii) 
consider/disregard pre-defined 
charsets as partitions, and (iv) 
include/exclude character sets 
from the analysis. Character 
sets (‘charsets’) can be defined 
and managed using the inter-
face (see below). In Fig 4, one 
taxon and four charsets were 
excluded manually. The 
‘Charset viewer’ button allows 
selecting and visualizing any of 
the charsets (highlighted in the 
full dataset). Clicking on the 
‘Define new charset’ button 
opens a window for selecting characters to include in the new charset. Multiple selections can be 
performed with the mouse (and shift/ctrl/cmd keys depending on your OS) or a range selection tool.

 
Fig. 5: The selection tool for defining new character sets. Select the characters to be included in the charset and click 

Fig. 4: The ‘Dataset settings’ window.
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In the first example (Fig. 5), a set of 9+4+7 characters have first been selected with the mouse, then 
added to the charset under construction by using the ‘Add selection’ button (red arrow in Fig. 5). 
That button can be used multiple times to sequentially add different sets of characters to your new 
charset. Once a selection has been added, its colour is changed to avoid any ambiguity. Once click-
ing the ‘SAVE’ button, you will have to supply a name (here, we used ‘MYCHARSET’) for the new 
charset and it will appear in the list of available charsets (Fig. 7).
	

 Note that a charset can also be 
selected using the range selection tool 
as in this second example (Fig.6) 
where nucleotides between position 1 
and 300 have been selected every 
three positions. This allows for exam-
ple to easily define 1st, 2nd, and 3d po-
sitions in a protein-coding sequence. 
The mouse selection tool (Fig. 5) and 
the range-selection tool (Fig. 6) can 
be used in combination. If your data-
set is exclusively made of in-frame 
protein-coding nucleotide sequences, 
quick definition of first, second, and 
third positions can be performed using 
the ad-hoc ‘Define pos 1,2,3’ button in 
the ‘Dataset settings’ (Fig. 4). 
	

 Charsets can then be excluded/
included from the analysis or 
considered/disregarded for data parti-
tioning. In the example in Fig. 7, we 
have 7 taxa in the outgroup, 1 ex-
cluded taxon, 11 charsets of which 4 
are excluded (in the present case, 
these are ambiguously aligned posi-
tions for different genes, hence, it was 
chosen to remove them from the 
analysis), and 3 partitions: ‘16S’, 
‘MY_CHARSET’, All other non-excluded 
characters (automatically grouped into 
a virtual charset named “REMAIN-
ING”)4. 
	


Gaps. The user can choose to remove, 
before the analysis is performed, ei-
ther all columns with at least one gap, 
or at least one gap or one ‘N’ (‘A’ or 
‘C’ or ‘G’ or ‘T’).

Fig. 6: Defining a character set with the range-selection tool.

Fig. 7: The ‘Dataset’ window after defining the new charset 
(‘MY_CHARSET’) and partitioning of the data.
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5.3.3 The ‘Codons’ tab
	

 The codon tab consists of a codon range viewer and two buttons that are used for codon range 
definition. Codons are indicated with black letters on a light green background. The remaining of 
the dataset is colored inversely 
(Fig. 8).  Pressing the ‘Make 
codons’ button will open the 
codon maker window where 
you can define (i) the range of 
the coding sequence and (ii) 
the genetic code you wish to 
use (i.e., The Universal Code, 
the Vertebrate Mitochondrial 
Code, etc., see below). The 
range of coding sequences can 
be defined by manually picking 
the first position in the dataset 
and pressing the ‘Set as first po-
sition’ button in the ‘Pick posi-
tion’ tool in the upper left corner 
of the window (Fig. 9, highlight 
a). Similarly, pick the last posi-
tion in the dataset and press the 
‘Set as last position’ button. Al-
ternatively, define the range by 
entering the indexes of the first 
and the last positions in the top 
middle part of the window (Fig. 
9, highlight b). Note that the 
first and last positions must de-
fine a range corresponding to a 
multiple of 3 nucleotides. If this 
is not the case,, the codon maker will trim the range to the closest smaller third nucleotide position. 
Also, note that if some of the codons are either stop codons or ambiguous codons, the codon maker 
will exclude the corresponding codons and a warning will pop up. Important: The nucleotides out-
side of the defined range of codons will be ignored during subsequent analyses. If you have charsets 
defined before the translation to the codons, these charset will be available only if they are compati-
ble with the codon range. These incompatible charsets will become available again as soon as you 
revert to the nucleotide character mode (see below). If you are saving a codon range to a nexus file, 
the incompatible charsets will not be saved. 
The genetic codes (for codon translation) available in the drop-down menu (Fig. 9c) are:
✓ The Universal Code;
✓ The Ciliate, Dasycladacean and Hexamita Nuclear Code;
✓ The Echinoderm and Flatworm Mitochondrial Code;
✓ The Euplotid Nuclear Code;
✓ The Invertebrate Mitochondrial Code;

Fig. 8: The ‘Codons’ tab after defining the codon range within the 
sequence. The Codon range is marked with the green background.

Fig. 9: The codon maker. Tools for defining codon range (a and b), the 
drop-down menu for selecting a DNA code (c), and the range of 
nucleotides selected as codons (d, in purple) are indicated.
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✓ the Mold, Protozoan, Coelenterate Mitochondrial & The Mycoplasma/Spiroplasma Code;
✓ The Vertebrate Mitochondrial Code.
For additional information on genetic codes, please check:  http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi.

Once you have defined the codon range and the genetic code, press the ‘Save’ button and proceed to 
defining your Analysis Settings (section 5.4 below).

Revert to nucleotides. To revert defined codons back into nucleotide characters, please press the 
‘Revert to nucleotides’ button (Fig. 8). If some of your charsets became unavailable during codon 
definitions, they will re-appear in the list of charsets.

5.3.4 Exiting the Settings Window
Once outgroup sequences, charsets, partitions, and excluded sequences and charsets have been de-
fined (and, potentially, the range of codons), and the ‘OK’ button has been hit, the main (entry) 
window is updated (Fig. 10): the upper-right window lists the new settings and the lower-right win-
dow indicates the excluded characters and excluded taxa in red, and the various partitions using a 
color-coded font background. Switching to another dataset in the left window and modifying the 
settings for that dataset does not affect the settings associates to the other datasets.

Note: A dataset can be saved as a Nexus file with both excluded taxa and excluded charset deleted from the 
DATA matrix. To do this, use the menu 'File > Save modified dataset to Nexus'.

Fig. 10: The MetaPIGA entry window updated after defining the settings.
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5.4.  [A] Analysis Settings

The analysis settings are accessed by clicking on the button  or by selecting in the menu: 
‘Search’ ➙ ‘Analysis settings’. The Settings window includes 5 tabs to switch among the corre-
sponding parameter controls relevant to: ‘Heuristic’, ‘Evaluation Criterion’, ‘Starting tree(s)’, 
‘Operators’, and ‘Miscellaneous’. The user can switch from on tab to another and confirm ALL 
changes by clicking on the ‘OK’ button in ANY of the tabs.

Note that the analysis settings window always indicates in the lower left corner (blue frame in Fig. 11) the 
amount of memory necessary for running the analysis given the settings so far selected. When the amount of 
memory exceeds that allocated to MetaPIGA, the corresponding text turns red. To alleviate the problem, use 
‘Tools’ ➙ ‘Memory Settings’ (Fig. 1) to increase the memory allocated to MetaPIGA.

5.4.1.  The ‘Heuristic’ tab 
We implemented four heuristics in MetaPIGA: a hill climbing algorithm, a Stochastic Simulated 
Annealing algorithm (SSA; [26, 42]), a classical Genetic Algorithm (GA; [27-29]), and the meta-
population Genetic Algorithm based on the Consensus Pruning principle (metaGA; [1]), all avail-
able in the Heuristic tab (Fig. 11). 

The Hill Climbing (HC) algorithms 
The ‘Stochastic HC’ algorithm generates a new solution tree at each step (using available operators) 
and accepts it only if its likelihood is better than the current solution. HC algorithms are fast but 
tend to generate solutions trapped in local optima and are therefore highly dependent on the starting 
tree localization in 
tree space as well 
as on the (un-
known) tree space 
topography. 
Hence, the user 
can choose to per-
form ‘Random-
restart hill climb-
ing’ i.e., an algo-
rithm that itera-
tively performs N 
hill climbings, 
each time with a 
different initial 
tree. Among the N 
solution trees, 
only the best is 
kept. The user can fix the number of restarts (20 by default). 

Figure 11 also illustrates the ‘mouse-over’ help system of MetaPIGA: an explanatory note appears when mov-
ing the mouse cursor over the corresponding field, parameter, or radio-button, etc. In figure 11, the mouse cur-
sor is over the ‘Random-restart Hill Climbing’ radio button.

The Stochastic Simulated Annealing algorithm (SSA)
The SSA algorithm uses statistical mechanics principles to solve combinatorial optimization prob-
lems [42]; i.e., it mimics the process of minimal energy annealing in solids. The first attempt to use 
this approach for the evolutionary tree problem was introduced in 1985 by Lundy [43], and its use 
for ML phylogeny inference was further developed in 2001 by Salter and Pearl [26]. SSA starts 
with an initial state (the starting tree) and randomly perturbs that solution (using available tree op-

Fig. 11: The ‘Heuristic’ window with the ‘Hill Climbing’ heuristic selected and the 
corresponding mouse-over help text. The blue frame highlights the amount of memory 
required for running the analysis given the settings so far selected.
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erators). If the new state is better (lower energy, better likelihood), it is kept as the new current 
state; if the new state is worse (higher energy, worse likelihood), it is accepted as the current state 
with the probability eΔE /T , where ∆E is the negative difference in energy (here, the difference of 
likelihood) between the two states, and T is the so-called ‘temperature’ of the system. If T is low-
ered slowly enough, the algorithm is guaranteed to find the optimal solution, but if the temperature 
is lowered too slowly, the time to find the optimal solution can exceed that of an exact search. The 
obvious asset of the algorithm is its ability to momentarily accept suboptimal solutions, allowing it 
to escape local optima whereas its obvious drawback is the difficulty to define the shape and speed 
of the ‘cooling schedule’ (i.e., the rate of the decrease in T). Efficient schedules highly depend on 
the dataset. The efficiency of the algorithm is unknown and optimization of its parameters has never 
been performed. Before this optimization analysis (in progress) is finalized, the SSA is provided as 
is for allowing users to explore its utility. The parameters available in MetaPIGA 3 for the SSA are 
described in Appendix 2.

The Genetic Algorithm (GA)
The GA is an evolutionary computation approach that implements a set of operators mimicking 
processes of biological evolution such as mutation, recombination, selection, and reproduction (e.g.,  
[44]). After an initial step of generating a population of trees, the individuals (specific trees with 
their model parameters) within that population are (i) subjected to mutation (a stochastic alteration 
of topology, branch lengths or model parameters) and/or recombination, and (ii) allowed to repro-
duce with a probability that is a 
function of their relative fitness 
value (here, their likelihood). 
Because selection preferen-
tially retains changes that im-
prove the likelihood, the mean 
score of the population im-
proves across generations. 
However, because sub-optimal 
solutions can survive in the 
population (with probabilities 
that depend on the selection 
scheme), the GA allows, in 
principle, escaping local op-
tima. In MetaPIGA, we implemented 5 alternative selection schemes (Fig. 12, see [1]):	


✓ ‘Rank’: individuals are assigned a probability of leaving an offspring (i.e., a copy of themselves) as a function of 

their position in a list in which they are ranked by their score. The probability for the ith individual of leaving an 
offspring to the next generation is equal to:

 2
n(n +1)

(n − i +1)

✓ ‘Tournament’: two individuals are drawn randomly from the population of I individuals and one offspring is 
produced from the individual with the higher score. Both trees are then placed back into the mating population 
and the whole process is repeated until I offspring have been generated. This is the default selection scheme 
when using the GA.

✓ ‘Replacement’: two individuals are drawn randomly from the population of I individuals and two copies of the 
better individual are returned to the mating pool (parents are discarded). The process is repeated sI times, where s 
is the selection strength. The offspring population is generated as a copy of the post-selection parent population.

✓ ‘Improve’: only those individuals that have improved (in comparison to their likelihood at the previous genera-
tion)  are allowed to produce an offspring. Each individual that fails this test is discarded and replaced by a copy 
of the current best individual.

✓ ‘Keep the Best’: only the best individual (i.e., with highest likelihood) is kept and all other individuals are re-
placed by a copy of the best individual.

Fig. 12: The ‘Heuristic’ window with ‘Genetic Algorithm’ selected.
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All selection regimes (except ‘Improve’ and ‘Keep the best’) tolerate the maintenance of poor trees 
in the evolving populations, an effect which allows escaping from local optima but increases search 
time (see below how the metaGA resolves that problem).
	

 We also implement one recombination scheme where each sub-optimal individual has a 
probability (determined by the user) to recombine with a better individual. Recombination is per-
formed by exchanging subtrees defined by one (if any) of the identical taxa partitions in the two pa-
rental trees (i.e., one internal branch that defines subtrees including the same taxa but with poten-
tially different sub-topologies). A recombination can be viewed as a large number of simultaneous 
topological mutations.
	

 Beside the selection scheme and the possibility to perform intra-population recombinations, 
the major parameter in the GA is the population size (set by the user).

The metapopulation Genetic Algorithm (metaGA)
This approach relies on the coexistence of P interacting popu-
lations [1] of I individuals each (P and I defined by the user): 
the populations are not fully independent as they cooperate in 
the search for optimal solutions. Within each population, a 
classical GA is performed: trees are subjected to mutation 
events, evaluation, and selection (5 alternative selection 
schemes are available as in the GA above). However, all topo-
logical operators are guided through inter-population compari-
sons defined and controlled by ‘Consensus Pruning’ (CP; [1]): 
topological consensus among trees across populations defines 
the probability with which different portions of each tree are 
subjected to topological mutations (Fig. 13). These compari-
sons allow the dynamic differentiation between internal 
branches that are likely correct (hence, that should be changed 
with low probability) and those that are likely incorrect (hence, 
that should be modified with high probability). 
Although CP allows for many 
alternative inter-population 
communication procedures, we 
implemented (Fig. 14) the two 
that we identified as the most 
useful: 
✓ ‘Strict CP’: internal 

branches shared by all trees 
across all populations can-
not be affected by topologi-
cal mutations, all other in-
ternal branches are uncon-
strained.

✓ ‘Stochastic CP’ (default): 
topological mutations affect-
ing a given branch are re-
jected with a probability 
proportional to the percent-
age of trees across all popu-
lations that agree on that branch. 

The default selection method for the MetaGA is ‘Improve’ (see above). This scheme greatly re-
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Fig. 13: The principle of CP. Before 
a tree is mutated, its topology is 
compared with those of the best trees 
from other populations; the 
consensus branches (bold red) define 
the partitions that can (green arrows) 
and cannot (red arrows) be affected 
by topological mutations; i.e., any 
operation moving a taxon across a 
consensus branch is prohibited.

Fig. 14: The ‘Heuristic’ window with the ‘metaPopulation Genetic 
Algorithm’ selected.
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duces the intra-population variability after each selection step but local optima are avoided thanks 
to ‘Consensus Pruning’. In other words, the metaGA resolves the major problem inherent to 
classical Genetic Algorithms by maintaining high (inter-population) variation even under 
strong (intra-population) selection.
	

 As constraining entirely an internal branch from being affected by topological mutations nec-
essarily increases the likelihood to be trapped in a local optimum, a tolerance parameter t (defined 
to 5% by the user in Fig. 14) is implemented, allowing any internal branch to be affected with a 
probability t even if the corresponding branch is shared by all trees. The user of MetaPIGA has the 
choice between a ‘blind’ and a ‘supervised’ procedure for handling constrained partitions (Fig. 14). 
In the former, a topological mutation that affects a constrained branch is simply aborted and the tree 
is left unchanged, whereas in the latter, topological operators exclusively target branches in a pool 
of acceptable (unconstrained) candidates. The ‘supervised’ procedure is used as default because 
preliminary analyses suggest that it allows trees to converge faster to higher likelihoods.
	

 The MetaGA allows for two, non-mutually exclusive, recombination flavors: ‘intra-
population recombination’ (lower-left field in Fig. 15) where each sub-optimal individual at each 
generation has a probability (instead of being mutated) to recombine with a better individual from 
that population (as in the GA above), and ‘inter-population hybridization’ (lower-right field in Fig. 
14) where, at each generation, there is a probability (defined by the user) that all sub-optimal indi-
viduals from one random population, instead of being mutated, are recombined with one individual 
from another population; sub-optimal individuals from other populations experience the normal mu-
tation procedure.
	

 As CP provides frequencies of internal branches shared among trees across populations, it 
also indicates if the populations converge towards a stable set of solutions, i.e., towards a consensus 
with stable branch frequencies. Hence, CP provides a stopping rule not available to other heuristics: 
the user can choose to stop the search when a series of successive mean relative error (MRE) values 
remains below a threshold defined by the user.  To increase independence among samples, MRE are 
computed every n>1 (i.e., non-successive) generations. The user defines n, as well as for how many 
samples the MRE must remain below the specified threshold before the search stops. See Section 
5.4.5 (The ‘Miscellaneous’ tab) for details.

5.4.2.  The ‘Evaluation criterion’ tab 
Setting ML Models
This window allows defining substitution models and their parameters (Fig. 15). Trees are estimated 
in MetaPIGA with the Maximum Likelihood criterion (ML) using one of 5 nucleotide substitution 
models for DNA sequences, one of 11 amino-acid substitution models, or  one of two codon mod-
els.  The implemented nucleotide substitution models are ([3] and refs therein): ‘Jukes Cantor’ 
(JC), Kimura’s 2 parameters’ (K2P), ‘Hasegawa-Kishino-Yano 1985’ (HKY85), ‘Tamura-Nei 
1993’ (TN93), and ‘General Time Reversible (GTR)’. The available amino-acid substitution mod-
els are: the ‘Poisson’ and ‘GTR20’ models (extensions of, respectively, the JC and GTR models to 
the 20 by 20 substitution matrix of protein sequences), and 9 empirical models for mitochondrial, 
chloroplastic, and nuclear Protein sequences: ‘MtMam’, ‘MtRev’, ‘RtRev’, ‘CpRev’, ‘BLOS-
SUM62’, ‘VT’, ‘Dayhoff’, ‘JTT’, and ‘WAG’. The implemented codon substitution models are GY  
and ECM (Empirical Codon Model) [45, 46]. For the empirical protein and codon models, state 
frequencies can be set to the empirical values used by the authors who designed the corresponding 
model. Alternatively, state frequencies can be set to those observed in the dataset under analysis. 
Analyses can be performed with Rate Heterogeneity among sites using either a discrete ‘Gamma 
distribution of rates’ (γ-distr) [35, 36] or a ‘Proportion of Invariant Sites’ (Pinv) [37], or both (γ-
distr + Pinv). All parameters of the model (transition/transversion ratio or components of the rate 
matrix, the shape parameter of the γ-distr, and Pinv) can be set by the user or estimated from a NJ 
tree (using the ‘Estimate starting parameters’ button, blue frame, Fig. 15). 
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Fig. 15: The ML model window for DNA (top panel) and Protein (middle panel) datasets. The purple arrow 
indicates the  drop-down menu for selecting the character set for which the settings are being defined: all charsets 
must be analyzed with the same single model (K2P and WAG models are selected in the examples shown), but the 
parameter values of the chosen model (e.g., the transition:transversion ratio for K2P or the estimated aa frequencies 
for WAG) can be different for each partition. Lower panel: When using the GTR20 model (i.e., the general-time-
reversible model extended to the 20x20 aa substitution rate matrix), the 190 rate parameters can be optimized during 
the search (i.e., if the RPM operator is selected), but the starting values can be set to the values of any of the 
empirical models (WAG, JTT, ...) by selecting the model in the drop-down menu (red arrow 1), and hitting the ‘Fill 
R matrix’ button (red arrow 2).
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Note: for nucleotide substitution models, the ‘transition-transversion ratio’ (Ti/Tv) is the parameter called 
kappa, i.e., the ratio between the rate of Ti and the rate of Tv. Because there are twice as many possible trans-
versions (A↔T; A↔C; G↔T; G↔C) as possible transitions (A↔G; T↔C), the kappa parameter does not 
equate to the ratio ‘frequency of Ti / frequency of Tv’. For example, under the JC model, kappa=1 but ‘FreqTi/
freqTv’= 0.5. For the codon substitution models kappa = ‘freqTi/freqTv’.
Note: Model parameter values can be estimated from the NJ tree using the ‘Estimate starting parameters’ but-
ton (blue frame, Fig. 15). However, if you stop the estimation before it completes, parameter values will not be 
re-set to the original values but to the values obtained by the optimization algorithm right before it was 
stopped.

Automated choice of best Model (LRT, AIC, BIC)
One difficulty in ML phylogeny inference is to choose the “right”  substitution model: too-simple a 
model will fit the data poorly and can lead to erroneous inference, whereas too-complex a model 
will run more slowly and over-fit the data (i.e., too many parameters in relation to the data will gen-
erate an increased variance for all parameters ... the model will describe noise in addition to the 
data). The softwares MODELTEST  and PROTTEST (http://darwin.uvigo.es) implement statistical 
methods for selecting the model that best fits the data ([41]; and refs therein). MetaPIGA makes the 
procedure easier as it implements the Likelihood Ratio Test, the Akaike Information Criterion, and 
the Bayesian Information Criterion and performs parameter optimization automatically: simply 
choose your preferred model testing method (red frames in Fig. 15). For example, running the 
Akaike Information Criterion test on the ‘ranoidea_1b.nex’ file will generate the results shown in 
Figure 16: MetaPIGA proposes to use the GTR model with gamma-rate heterogeneity but no pro-
portion of invariant sites. Accepting this proposition will set this model in MetaPIGA as well as the 
starting parameter values (here, rate parameters and gamma distribution shape parameter) to those 
evaluated during the test. As the various models are tested in parallel on all the CPU cores of your 
machine, MetaPIGA will warn you if not enough memory is available, a problem that can easily be 
alleviated by reducing the number of cores allocated to the task (blue oval in Fig. 16). 

Fig. 16: Running the Model Testing (here, with the AIC criterion).
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Note: that partitions (defined in the ‘Dataset Settings’ window, Figs. 4-10) are taken into account when per-
forming a ‘Model Test’. Given that model testing can take several hours to run on large datasets (especially 
with protein data, given the number of models to compare), MetaPIGA allows you to restrict model testing 
(Fig. 16) to the comparison of a subset of models.

Note: if you want to abort model testing (e.g., because you forgot to include/exclude taxa and/or charsets, or 
want to change your partitioning of the data), hit the ‘CANCEL TESTING’ button: testing will be aborted and 
all optimizations performed so far will be ignored. On the other hand, hitting a ‘CANCEL CURRENT’ button 
will stop optimization on the model being currently evaluated; obviously, the results of the statistical tests will 
then be contestable.

Intra-step optimization
All parameters of the model (transition/transversion ratio or components of the rate matrix, the 
shape parameter of the γ-distr, and Pinv), branch lengths, and among-partition relative rates can 
experience ‘Intra-step optimization’ (blue frame in Fig. 15) either periodically during the search 
and/or at the end of the search. The principle of stochastic methods (i.e., inter-step optimization 
methods), such as MC3 approximations of the Bayesian approach, stochastic simulated annealing, 
and genetic algorithms, is to AVOID intra-step optimization. Hence, the default in MetaPIGA is that 
all target parameters (chosen by the user) are NOT optimized intra-step (only the consensus tree 
obtained after replicated searches -- see section 5.4.5 -- will have it’s model parameters optimized). 
Hence, the stochastic heuristic itself will optimize topology, branch lengths and other model pa-
rameters during each search. When using the 'discrete' or 'stochastic' options (blue frame, Fig. 15), 
current best tree(s) are also optimized during the search, respectively every s numbers of steps or 
with a probability p at each step. These two options can obviously greatly increase running time. 

Note: For intra-step optimization, MetaPIGA implements a single algorithm: a genetic algorithm without re-
combination; each tree to optimize is copied 7 times and the population of 8 individuals experiences mutations 
(on selected targets); selection is performed with tournament; the GA is stops when the likelihood remains un-
changed for 200 steps (generations). Future versions of MetaPIGA will also include alternatives to the GA 
(such as, possibly, the Powell’s algorithm).

Note: the ‘consensus tree only’ option (blue frame, Fig. 15) is equivalent to the “never” option when perform-
ing a single search (one replicate). The two options differ only when preforming multiple replicates (see sec-
tion 5.4.5 below). When target parameters are optimized every s steps or stochastically, optimization is also 
performed at the end of (each) search.

5.4.3.  The ‘Starting tree(s)’ tab
As shown in Figure 17, the user can choose to produce the starting tree(s) either as NJ Tree(s) [47] 
or as Random Tree(s) (i.e., with random topology and random branch lengths) or as ‘Loose Neigh-
bor Joining’ (LNJ) tree(s), i.e., a pseudo-random topology (modified from [1]). For generating a 
LNJ tree, the user specifies a proportion value (p=[0-1]) and, at each step of the NJ algorithm, the 
two nodes to cluster, instead of corresponding to the smallest distance value, are randomly chosen 

from a list containing the NTax(Ntax −1)p
2

 smaller distances, where NTax is the number of se-

quences in the dataset. Branch lengths are computed as in the NJ method. In other words, the LNJ 
tree is a NJ tree with some topology randomization which amount is defined by the user. This 
approach is a particularly useful compromise between random starting trees (p=1) that require long 
runs of the heuristic for optimization, and a good but fixed topology (the NJ tree, i.e., p=0) that 
might be prone to generate solutions around a local optimum. The LNJ starting tree method is par-
ticularly well adapted to the metaGA. Indeed, starting from I*P (where I is the number of individu-
als (trees) per population and P is the number of populations) random trees will significantly in-
crease the search time whereas starting from I*P identical NJ trees will cause the stopping rule to be 

MetaPIGA 3.0 manual    p24



reached too fast (see below) with local optima solutions. On the other hand, LNJ starting trees 
provide enough variation among populations for avoiding local optima but significantly 
speed-up the search in comparison with using ‘True random’ starting trees.

Fig. 17: The ‘Starting tree(s)’ window.

Note: The distance matrix used for building NJ or LNJ starting trees can be computed using any of the available substitution 
models (see above) and with or without Pinv and/or γ-distr. Unless the user wants to start  with trees with the highest likelihood 
possible, we recommend using a simple and  fast  model (e.g., JC and Poisson respectively for nucleotide and protein data) for 
generating starting trees as they will  anyway be highly modified during the heuristic search. For codon substitution models, three 
distance matrices are calculated (for codon positions 1, 2, and 3) using one of the available nucleotide substitution models. These 
three matrices are then weighted based on the evolutionary information they provide and combined into the single distance ma-
trix [48].
Note: When choosing the ‘Neighbor Joining’ starting-tree option  during a ‘Random-restart hill climbing’ search (Heuristic tab, 
section 5.4.1), the NJ tree will only be used for the first hill climbing, and ‘LNJ trees’ will be generated for all restarts.
Note: Arbitrary  starting trees (in Newick format) can also be imported by the user. When clicking on the ‘User tree(s)’ radio 
button  then on the ‘select’ button (Fig.17), you will  prompted to choose starting trees from a list. Various buttons allow you to 
add more trees in that list either from the ‘TreeViewer’ or from Nexus files. 
Notes: if the Nexus file contains user trees (in a Tree Block) and if you select the ‘User tree(s)’ starting-tree option:
✓ The first tree in the Tree Block will be used if you selected SA or stochastic HC as the heuristic;
✓ The I first trees in the Tree Block will be used when selecting GA as the heuristic option with I individuals (one tree per indi-

vidual);
✓ The P first trees in the Tree block will be used when selecting CP as the heuristic with  P populations (one tree per popula-

tion);
✓ If there are too few trees in the list of starting trees, MetaPIGA will cycle among the available trees;
✓ In the case of a ‘Random-restart hill  climbing’ search (‘Heuristic’ tab, section 5.4.1), if the number of provided starting trees 

is smaller than N+1 (i.e., the number of restarts plus 1), LNJ trees will be generated for the missing starting trees.

5.4.4.  The ‘Operators’ tab 
All stochastic heuristics use Operators, i.e., the topology and parameters’ modifiers allowing the 
heuristic to explore solution space. In MetaPIGA, we implemented 5 operators for perturbing tree 
topology and 6 operators for perturbing model parameters (see below). These operators can be used 
in any combination, either at equal or user-defined frequencies. The user can choose for these fre-
quencies to change dynamically during the search, i.e., MetaPIGA can periodically evaluate the 
relative gains in likelihood produced by each operator and adjust their frequencies proportionally5. 
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In the example given in figure 18, 
the evaluation of the operators’ per-
formances is computed every 100 
generations, and the minimum fre-
quency of any selected operator is 
set to 4%.
	

 ‘Nearest Neighbor Inter-
change’ (NNI), ‘Subtree Pruning 
Regrafting’ (SPR), and ‘Tree Bisec-
tion Reconnection’ (TBR) are classi-
cal branch-swapping algorithms 
used in many heuristics for phy-
logeny inference [21]. MetaPIGA 
also implements the following to-
pology operators:
✓ ‘Taxa Swap’ (TXS): n randomly-

selected terminal branches are 
randomly swapped. The value of n can be set to any number between 2 (default) and the total 
number of taxa (ALL), or randomly chosen (RAND) at each generation.

✓ ‘Subtree Swap’ (STS): 2 (default) or a random number (RAND) of subtrees are randomly 
swapped.

The 6 other operators affect model parameters:
✓ ‘Branch Length Mutation’ (BLM) and ‘internal Branch length mutation’ (BLMint). As our pre-

liminary analyses (data not shown) indicated that branch length optimization yields external 
branch lengths that are quite similar to those obtained through topology-constrained NJ (both on 
a NJ topology and on a ML topology), we implemented a branch-length operator (BLMint) af-
fecting internal branches only. We also implemented a branch-length operator (BLM) that can 
affect all (internal and external) branches. 

✓ ‘Rate Parameters Mutation’ (RPM): This operator is not available for the JC model as the rate 
parameter is identical for all possible substitutions under this model. The K2P and HKY models 
consider two rates (the rate of Ti, and the rate of Tv); hence, only the kappa parameter (ratio of 
Ti and Tv rates) can be affected. The TN93 model assigns 3 different rates: for transversions, for 
A↔G transitions, and for T↔C transitions. The GTR model allows assigning different rates for 
the 6 possible substitutions: A↔T, A↔C, G↔T, G↔C, A↔G, and T↔C. Under the TN93 and 
GTR models, the user can choose that each RPM operation affects either ‘1’ (default) randomly 
chosen rate parameter or ‘ALL’ rate parameters. The ‘1’ and ‘ALL’ commands are equivalent un-
der the K2P and HKY models because, although there are two rates, there is only one free rate 
parameter (the other one is set to 1). 

✓ ‘Gamma Distribution Mutation’ (GDM): modifies the γ-distr shape parameter.
✓ ‘Proportion of Invariable sites Mutation’ (PIM): affects Pinv. 
✓ Among-Partitions Rate Mutation’ (APRM): affects the relative rates among partitions. 

Notes: 
• The BLM, BLMint, RPM, and GDM operators affect their corresponding parameter by multiplying the pa-

rameter’s value of the previous generation by a random number drawn from an exponential distribution (with 
λ=2), and shifted by 0.5 (such that the minimum value is 0.5 and the mean is 1).

•  The PIM (values between 0 and 1) and APRM operators affect their corresponding parameters by multiplying 
the parameter’s value of the previous generation by a random number drawn from a normal distribution (with 
mean=1 and SD= 0.5). The resulting multiplier is rejected if ≤ 0.4.

• For LNJ starting trees, the initial length of all internal branches is computed with the NJ algorithm whereas, 

Fig. 18: The ‘Operators’ tab.
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for random starting trees, they are drawn from an exponential distribution (with λ=1), and shifted by 0.001 (to 
avoid zero length branches).

5.4.5.  The ‘Miscellaneous’ tab 
This window allows the user to choose stop criteria and define the parameters of replicated searches 
(to obtain estimates of branches’ posterior probabilities). In addition, the user can choose which log 
files to save on disk. Also, if a supported graphics card is available, the user can choose to use either 
the CPU or the GPU for likelihood computation. Increase of computation speed is particularly sig-
nificant for protein and codon models.

Fig. 19: The ‘Miscellaneous’ window for defining stopping condition(s), parameters for performing replicates (and 
obtaining estimates of posterior probabilities under the MetaGA), and the label of the directory in which all results 
will be saved. Log files to be saved on disk can also be defined. The amount of memory required for running the 
analysis (blue frame) has significantly increased because a complex model is used (Fig. 14) and because 4 cores 
have been chosen for parallelization (red frame). 

Stop Criteria
Exactly as in the MC3 approximations of the Bayesian approach [24, 25] implemented in the soft-
ware MrBayes [31] for which the user must define a number of generations and trees to sample be-
fore stopping the search, all stochastic heuristics implemented in MetaPIGA require a stop condi-
tion. We implemented several stop conditions in MetaPIGA; any number of conditions can be set 
and each one can be necessary or sufficient (Fig. 19, ‘nec.’ or ‘suf.’)6.  The stop criteria are: number 
of steps e.g., number of generations for the GA or the metaGA), elapsed time, and likelihood stabil-
ity. The later, termed ‘Automatic’ in the GUI (Fig. 19), means that the search stops when the log-
likelihood of the best tree has not improved of more than a given percentage (defined by the user, 
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0.05% by default) at any step during n steps (n also defined by the user). 
Note: that, when using the ‘Random-restart hill climbing’ heuristic (Fig. 11), the stop conditions are defined 
for one hill climbing. For example, when using random-restart hill climbing with 10 restarts and ‘2000 steps’ 
as the stop condition, 11 hill climbing of 2000 steps will be performed but only the best scored tree, among the 
11 results, will be kept.

When using the metaGA heuristic, one can use the Consensus’ stopping condition based on con-
vergence of the populations of solutions. Indeed, comparing (across generations) the frequencies of 
internal branches shared among the P*I trees provides a means for assessing whether the popula-
tions converge towards a stable set of solutions, i.e., towards a consensus with stable branch fre-
quencies. Hence, a stopping rule, not available to other heuristics, can be used under Consensus 
Pruning (=MetaGA): the user can choose to stop the search when a series of mean relative error 
(MRE) values remains, across generations, below a threshold (in %) defined by the user. In our ex-
perience, using the Consensus stopping-rule with a threshold of 5% works very well when perform-
ing replicates (for estimating posterior probabilities of clades, see below). On the other hand, if you 
perform a single search in order to find the single very best tree, you might want to experiment with 
either lower threshold values (e.g., 1%) or the stopping rule based on stability of the likelihood 
value (e.g., 200 steps without improvement of 0.01% of the log-likelihood value). 

Note: To increase independence among samples, consensus trees are sampled every n>1 (i.e., non-successive) 
generations. For example, given two consensus tree, Ti and Tj, corresponding to the consensus among the P*I 
trees at generations 5000 and 5005,  respectively, the MRE is computed as follows:

MRE(Ti ,Tj ) =

ΦTi

p − ΦTj

p

max(ΦTi

p ,ΦTj

p )p=1

nPartition

∑
nPartition

, where nPartition is the sum of taxa bi-partitions  observed in Ti and Tj 

(but identical partitions are counted once), and ΦTi

p and ΦTj

p are the consensus values of bi-partition p in trees Ti 

and Tj, respectively. Note that 
ΦTi

p − ΦTj

p

max(ΦTi

p ,ΦTj

p )
= 1 if either both ΦTi

p and ΦTj

p are nil, or if the corresponding 

internal branch does not exist in either Ti or Tj. Internal branches that are absent from both Ti and Tj are not 
considered. If the MRE(gen5000,gen5005) is above the user-defined threshold (e.g., 3%), it is discarded and a new 
MRE is computed for the comparison of generations 5005 and 5010. On the other hand, if MRE(gen5000,gen5005) is 
below the threshold, a counter is incremented and a new MRE is computed for the comparison of generations 
5000 with the next sample (here, corresponding to generation 5010). The user defines for how many samples 
the MRE must remain below the specified threshold before the search stops.

	


Replicates
This functionality is very important because it allows estimating the support of trees and 
clades. For all stochastic heuristics implemented in MetaPIGA, the user can chose to repeat the 
search many times, generating a majority-rule consensus tree among the replicates. This is particu-
larly useful under the metaGA because previous analyses [1] indicate that a set of multiple 
metaGA searches produces trees and clades with frequencies that approximate their posterior 
probabilities. Hence, metaGA branch support values would be comparable to posterior probabili-
ties provided by MC3 approximations of Bayesian approaches. The user can either fix the number of 
replicates, or specify a range of minimum and maximum number of replicates then choose to let 
MetaPIGA stop automatically, exploiting the MRE metric in a similar way as the consensus across 
populations in a single metaGA search (see above). 

Note: Here, however, the MRE is computed using consensuses across replicates, i.e., Ti is the consensus 
among the final trees obtained between replicates 1 and i. No additional replicate is produced when the MRE 
among N replicates remains below a given threshold. Consecutive replicates can be used because they are in-
dependent. As an example, if N is set to 10, and the first MRE below the user-defined threshold (e.g., 5%) in-
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volves replicates 1-241 and 1-242, the MRE is computed 9 additional times, i.e., between the reference con-
sensus T1-241 and Tj, for j corresponding to replicates 1-243, then 1-244, then 1-245, etc. The search stops if the 
inter-replicates MRE remains below 5% for 10 consecutive replicates. On the other hand, the counter is reset to 
zero as soon as the MRE exceeds 5%, and the new reference tree for computing the MRE is then set to T1-current 

replicate. The inter-generations (=intra-replicate)  MRE stopping rule can be used in combination with the inter-
replicate MRE stopping rule, letting MetaPIGA decide both when to stop each replicate and when to stop exe-
cuting additional replicates (i.e., when to stop the entire analysis).

Note: in most cases, performing multiple replicates is aimed at generating a consensus tree and estimating 
support of internal branches, hence, it is usually not important to perform a final intra-step optimization of all 
model parameters at the end of each replicate. This is why the default for ‘Intra-step optimization’ (blue 
frames, Fig. 15) is ‘consensus tree only’. It means that a final round of optimization for branch lengths and 
model parameters is NOT performed after each replicate (this will significantly save run time and will not 
change anything to the internal branches’ frequencies)  but it is performed on the final consensus tree (i.e., 
model parameters and branch lengths are optimized on the consensus-tree topology). When the user chooses to 
optimize best trees ‘at the end of (each) search’  the consensus tree is optimized as well. With the 'discrete' and 
'stochastic' options, current best tree(s) are also optimized multiple times during each replicate as well as at the 
end of each search.

The grid
To start an analysis on an XtremWeb-CH Grid, check the ‘Activate GRID’ check-box and write 
your grid credentials in the appropriate boxes. If your account is active and the MetaPIGA binaries 
are uploaded to the MetaPIGA module, your analysis will start on the Grid after you press the ‘Run’ 
button. For user documentation, please refer to the following site: 
www.xtremwebch.net/mediawiki/index.php/How_use. Please, contact us for additional information.

Log files
The user can choose to write log files on disk. This is however mostly for debugging purposes and 
performance testing such that only expert users might need this functionality. Selecting the log files 
indicated with asterisks can (i) significantly slow down the search and (ii) fill up large amount of 
disk space (with the magnitude of slow-down and fill-up approximately indicated by the number of 
asterisks).  All log files are written in the results folder (see below). 
✓ Dataset - Working matrix log file - Prints the compressed dataset into 'Dataset.log'. The last row contains the 

weight of each column, i.e., the number of times this data pattern is found in the data matrix. 
✓ Distances – Distance matrix log file - Prints the distance matrix into 'Distances.log'.
✓ Starting trees – Starting Trees log file - Prints the starting tree(s) into 'StartingTrees.tre'.
✓ Consensus (**)  – Consensus log file - The ‘Consensus.log' file records consensuses at each step of Consensus 

Pruning. It requires disk space between 100 bytes and 1Kb per taxa and per consensus recorded. For example, 
recording consensuses for a dataset of 200 taxa, using the metaGA heuristic for a fixed number of 5000 genera-
tions will generate a file between 100Mb and 1Gb for each replicate produced.

✓ Heuristic details (*) – Heuristic search log file - The 'Heuristic.log' file records details about each step of the 
heuristic. Requires disk space between 500 bytes & 1 Kb per iteration of the heuristic.

✓ Heuristic trees (**) – Heuristic search tree file - The 'Heuristic.tre' file records each tree found at each step of the 
heuristic. It requires disk space of +/- 130 bytes per taxa per tree recorded. For example, recording trees for a 
dataset of 200 taxa, using the metaGA heuristic with 4 populations of 4 individuals each, for a fixed amount of 
5000 generations will generate a file of about 1.5Gb for each replicate produced.

✓ Operator statistics – Operator statistics file – The ‘OperatorsStatistics.log’ file records operator statistics at the 
end of a search, as well as each time the operator frequencies have been updated.

✓ Operator details (***) - Operators log file - The 'OperatorsDetails.log' file records details about the operators 
used. It requires disk space of 200-300 bytes per taxa per operation. For example, recording operator details for a 
dataset of 200 taxa, using the metaGA heuristic with 4 populations of 4 individuals each, for a fixed number of 
5000 generations will generate a file between 1.7Gb and 3.4Gb for each replicate produced. 

✓ Ancestral sequences  - Ancestral sequences log file - At the end of the heuristic, the ancestral sequence probabili-
ties are printed into the 'AncestralSequences.log' file
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✓ Performances (*)  – The ‘Performances.log’ file records the amount of time (in nanoseconds) used by each op-
erator. It requires disk space of +/- 1 Kb per iteration of the heuristic.

Output label and directory
Viewing of the analyses results can be done in the MetaPIGA graphical interface. However, all re-
sults are also written on disk for later retrieval, viewing and manipulation. When a MetaPIGA 
search is started, a result directory (named ‘MetaPIGA results’) is generated in your home directory 
(Mac OS X & Linux) or in the ‘My documents’ folder (Windows). When you launch an analysis, 
the results will be automatically saved in a folder named with its ‘label’ (which is, by default, the 
name of the nexus file minus the “nex” extension, see Fig. 19) followed by the date (year-month-
day) followed by the time (hour_min_sec) at which the search was started. This allows for easy dif-
ferentiation of analyses performed at different times on the same dataset. For example, the result 
folder “ranoidea_1b - 2010-06-09 - 17_16_16” includes the result files for the analysis of the 
“ranoidea_1b.nex” data set started on June 9, 2010 at 5:16:16PM.
At the end of the search, the result folder contains the file Results.nex, i.e., a text file including:
➡ A MetaPIGA block corresponding to the search parameters;
➡ The data set;
➡ A tree block with the result trees, i.e.:

✴ Either (if replicates have not been performed):
• The best tree found (among all P*I trees) named appropriately (e.g., ‘TREE 

rana_~_2010~06~09_~_17_16_16_~_Genetic_algorithm_best_solution’) 
• The best tree, of each of the P populations, named appropriately (e.g., ‘TREE 

rana_~_2010~06~09_~_17_16_16_~_Best_individual_of_population_0’)
✴ Or (if replicates have been performed):

• The consensus tree (among all replicates) named appropriately (e.g., ‘TREE 
rana_~_2010~06~09_~_17_16_16_~_Consensus_tree_~_200_replicates’) 

• Then, for each replicate:
- The best tree found (among all P*I trees) named appropriately (e.g., TREE 

rana_~_2010~06~09_~_17_16_16_~_Genetic_algorithm_best_solution_[Rep_8]
- The best tree, of each of the P populations, named appropriately (e.g., ‘TREE 

rana_~_2010~06~09_~_17_16_16_~_Best_individual_of_population_0_[Rep_8]’)

If replicates have been performed, the result folder will also contain a text file ‘ConsensusTree.tre’ 
with the consensus tree among replicates. That tree is automatically updated in the run directory 
after each replicate. Hence, if a crash or power cut occurs, the latest consensus tree (summariz-
ing all replicates that accumulated before the cut)  can be loaded and visualized in MetaPIGA 
after restarting. As the name of the tree includes the number of replicates, you will know when the 
cut occurred. 
	

 As the consensus tree file is in Newick format, it can also be loaded in tree viewing softwares 
such as FigTree (http://tree.bio.ed.ac.uk/software/figtree/) or TreeView 
(http://taxonomy.zoology.gla.ac.uk/rod/treeview.html). 
If log files have been requested (see above), they will be printed either in the results folder or in cor-
responding replicates subfolders.

5.4.6.  Exiting the Settings Window 
Once all settings have been chosen by the user for the ‘Heuristic’, ‘Evaluation Criterion’, ‘Starting 
Tree(s)’, ‘Operators’, and ‘Miscellaneous’ tabs and the OK button has been hit, the Settings win-
dow closes and the main (entry) window is updated with the new settings listed in the upper-right 
window. The user can go back to the setting window at anytime for changing any parameter. 
Switching to another dataset in the left window and modifying the settings for that dataset does not 
affect the settings associates to the other datasets.
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5.5.  [R] The Run window

	


The search is launched by clicking on the 
‘[R] Run heuristic search’ button  (or by selecting in the menu: ‘Search’ ➙  ‘Run’). Once the 
starting trees have been generated (this can take time), the user can follow the ongoing search by 
looking at the lower left panel of the run window which displays graphical information specific to 
the chosen heuristic method. For example, figure 20 shows the running window for a MetaGA 
search with replicates, 4 populations, and stopping rules as indicated in figure 19. The lower-left 
panel indicates the likelihood progression of each of the populations (the best tree likelihood in each 
population is indicated) as well as which replicate is ongoing (rep 71). If you set replicates paralle-
lization to >1 (see red frame in Fig. 19), tabs give access to the graphs corresponding to each CPU 
core (core number 2 is selected in Fig. 20; red arrow). 
	

 When using the Stochastic Hill Climbing (HC) or the simple Genetic Algorithm (GA), the 
lower-left panel displays the likelihood progression of either the current tree (for stochastic HC) or 
of the best tree in the single population of trees (for the GA). When using the SSA, it indicates the 
progression of both the ‘temperature’ and of the likelihood. During a random-restart Hill Climbing, 
the graphical interface indicates the likelihood of the overall best solution (green line), the best so-
lution of the current restart (yellow curve), and the starting tree of each restart (red line). Magenta 
and blue vertical lines indicate new restarts and replicates, respectively.

Fig. 20: The run window when replicates have been requested under the MetaGA heuristic. The best tree likelihood 
in each population is indicated
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 In parallel with the likelihood progression displayed in the lower-left panel, the right panel 
displays information on the current inferred phylogeny. When performing a single search (i.e., 
without replicates) the tree displayed is the current best tree. When performing replicates (as in Fig. 
20), the right panel shows the current consensus tree (and corresponding frequencies of internal 
branches) among all replicates accumulated thus far. Hence, the right panel of the run window al-
lows the user to observe, on the fly, the progression of the phylogeny inference or (when using the 
metaGA) the progression of posterior probabilities of branches. In both cases, the user can switch 
between phylogram and cladogram (blue arrow in Fig. 20). The current values of the inter-
generations (=intra-replicate) MRE and inter-replicate MRE (see ‘stopping rules’ above) are also 
indicated (red frames in Fig. 20). 
	

 Once the search is completed, a window will pop up reminding you that all results (best trees 
and consensus tree) have been saved in your result folder, but will also propose you to send ‘All 
best trees’ or the ‘Consensus tree only’ to the ‘Tree Viewer’ (see section 5.6 below) for further ma-
nipulations (rerooting, exporting, changing substitution model and further optimizing model pa-
rameters, reconstruction of ancestral states, etc).
	

 When using the XtremWeb-CH Grid, the run window shows the status of the workers: 
queued, waiting, processing, completed, killed, or in error (see Fig. 21 for details). Workers with the 
status ‘complete’ have already sent their results back to your local machine. To use the XtremWeb 
Grid, please, refer to the following web site:
http://www.xtremwebch.net/mediawiki/index.php/How_use 

Fig. 21: The ‘Run’ window when using a XWCH grid. Status of worker are color-coded. A white box indicates that 
the replicate is waiting to be submitted to the grid whereas a gray box means that the replicate is waiting for an 
available worker. A blue box indicates that the worker is selected will start the analysis. A yellow box indicates that 
the replicate is running. A green box indicates that the replicate is completed and successfully retrieved from the 
grid. Finally, a red box means that MetaPIGA cannot retrieve the result or that the worker is not responding (error 
replicates are not used and have no effect on your analysis). Replicates stopped by the user are indicated with a 
black box (‘killed’).
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5.6.  [T] The tree viewer 

5.6.1.  Viewing and evaluating trees 
The Tree Viewer is opened by clicking on the 
‘[T] Tree viewer’ button  (or by selecting in the menu: ‘Tools’ ➙ ‘Tree viewer’). Trees can be 
saved in the ‘Tree viewer’ either at the end of a search or by importing trees from files. The user can 
even type (or copy-paste) a tree in Newick format in the lower left panel (red frame in Fig. 22), give 
it a name and add it to the TreeViewer’s list of trees. The Tree viewer allows to display, rename, or 
remove any of these trees at any time. The ‘Clear list’ button delete all trees from the Tree viewer. 
Buttons at the bottom of the right panel allow to display the selected tree in various styles (rectan-
gular, triangular, circular, phylogram), and show/hide its nodes’ numbers or its branch lengths. 
Other buttons allow rerooting a tree at any node, and save or print one or several selected tree(s). 
The upper right panel indicates the parameters of the model (for each partition, if any) and the cor-
responding likelihood (yellow oval; Fig.22) of the selected tree. Obviously, for computing a likeli-
hood, every tree must be associated to a dataset, hence, the ‘Tree Viewer’ only lists the trees that are 
relevant to the active dataset. The latter can be selected either in the ‘Current dataset’ scroll down 
list (Fig. 23) or in the MetaPIGA main window (Fig. 2 and 10). This allows the user to easily man-
age trees generated with different datasets. 

Note: Several trees can be simultaneously selected from the list by using ‘command click’ and/or ‘shift-click’. 
This allows removing several trees simultaneously. On the other hand, all other commands (model change, 
printing, rooting, ancestral state reconstruction, etc.) will affect only the tree highest in the list of selected trees. 

Fig. 22: The MetaPIGA tree viewer with one tree selected in the list. Red arrow: the ‘Model’ button gives access to a 
window (Fig. 23) for optimization of parameters and/or branch lengths and re-computation of the corresponding 
Likelihood under any substitution model. Green arrow: button giving access to the ancestral state reconstruction 
panel (Fig. 24).
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 Clicking on the ‘Model’ button in the ‘Tree-
Viewer’ (red arrow; Fig. 22), opens the ‘Evaluation 
settings’ window (Fig. 23) that allows (for the se-
lected tree) to (re-)optimize model parameters and/
or branch lengths and re-compute the correspond-
ing likelihood under any settings of model parame-
ters. Note that, although parameters can be manu-
ally set for each partition separately by using the 
vertical tabs (Fig. 23), clicking on the ‘Optimize 
model parameters’ or ‘Optimize branch lengths’ 
button will perform joint optimization for all parti-
tions. Once the model setting have been confirmed 
by clicking the ‘OK’ button, the upper-right panel 
of the ‘TreeViewer’ (Fig. 22), and the tree itself, 
will be updated with the new parameter values.

5.6.2.  Ancestral states reconstruction 
During phylogeny inference under ML, the probabilities of all possible character states at all nodes 
are computed for all characters. This provides means for reconstructing ancestral sequences both in 
silico and in the laboratory (e.g., [10-14]). Clicking on the button indicated with a green arrow in 
Fig. 22 gives access to the ancestral state reconstruction panel of the ‘TreeViewer’. Simply select an 
internal node on the tree for viewing its corresponding ancestral sequence. Various buttons allow for 
different display styles and for exporting the ancestral sequence(s) (and the corresponding statistics) 
either of the selected node or of all internal nodes of the tree. The ancestral sequence reconstruction 
we implemented is Empirical Bayes [49].

Fig. 24: The ancestral state reconstruction panel displays the conditional likelihood proportions of 
each state at each site for the node 6, directly selected on the tree in the upper-right panel. The and 

 buttons allow exporting to disk a text file with the ancestral states of the selected node or of all 
nodes, respectively. Use the  and  buttons to switch between a view where bars of the 
histogram, for each character, are in front of each others (with the column of lowest likelihood 
proportion in the front) and a stacked histogram. The sequence indicated at the top corresponds to the 
most likely ancestral sequence.

Fig. 23: The evaluation settings window.
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5.7.  Building and running batch 
files with the GUI
MetaPIGA supports the use of batch files that can 
be either written manually (see next Section) or 
generated using tools available in the GUI: datasets 
and their settings can be duplicated, settings can be “stamped”  from one dataset to another, and 
multiple combinations of datasets and settings can be saved in a batch file that can be run either in 
the GUI (with various graphical information on search progress) or using command line. 

5.7.1.  Transferring analysis settings among datasets 
Batch files are particularly useful for running different datasets with the same analysis settings. 
Imagine for example that you have opened 4 datasets in MetaPIGA (‘012x898 - Primate’, ‘PRO-
TEINS - 36x958’,  ‘ranoidea_1b’, and ‘055x1314 - mp1’) and that you have chosen all settings (us-
ing the various tabs in the Analysis 
Settings window, see section 5.4) 
for the dataset ranoidea_1b. Now, 
as shown in figure 25, you can 
transfer these settings to any com-
bination of other opened datasets by 
(i) choosing the source dataset, then 
(ii) clicking on the ‘[O] Associate 
settings’ button  (or by selecting 
in the menu: ‘Batch’ ➙ ‘Associate 
selected dataset analysis settings’), 
then (iii) selecting the dataset(s) 
you want to transfer the settings to, and (iv) click on the ‘Associate’ button. 
✓ The batch can then be run in the GUI by clicking on the ‘[⇑R] Run batch’ button  (or by se-

lecting in the menu: ‘Batch’ ➙ ‘Run all datasets in a batch’)
✓ Alternatively, the user can save the batch by clicking on the ‘Save all files in a Nexus batch’ 

button  (or by selecting in the menu: ‘Batch’ ➙  ‘Save all datasets in a batch Nexus file’). This 
file can be run in command line (e.g., on a distant server) or re-imported in MetaPIGA and run 
through the GUI.

5.7.2.  Duplicating datasets for batch files 
Batch files are equally useful for running sequentially a single data set under multiple different set-
tings: for example analyzing your favorite dataset with different substitution models or with differ-
ent heuristics. First make as many duplicates of your dataset (called ‘012x898 - Primate’ in Fig. 26) 
as you wish by clicking on the ‘[U] Duplicate selected dataset’ button  (or by selecting in the 
menu: ‘Batch’ ➙ ‘Duplicate selected dataset’). Then, select a duplicate and change the settings as 
required (in the ‘Analysis settings’ window). In this way, you can for example run a batch file that 
will sequentially run the ‘Primate’, ‘Primate_1’, ‘Primate_2’, and ‘Primate_3’ datasets with, re-
spectively the JC, K2P, HKY, and GTR substitution models. Note that, when duplicating a file, the 
settings listed in the ‘Dataset settings’ window (outgroup taxa, charsets, partitions, etc.) are dupli-
cated as well.

Fig. 25: Transferring settings from one dataset to other dataset(s).
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a

b

Fig. 26: (a) Duplicating datasets and (b) the parameter panel indicates the modified settings as chosen in the ‘[A] 
Analysis Settings’ window (here, we have changed the substitution model to K2P with rate heterogeneity (and 
estimated starting parameters) for the ‘Primate_1’ duplicate whereas the initial settings for the ‘Primate’ dataset is 
JC).

Notes: when running a batch file:
✓ The run window is simplified (in comparison to what is described above in Section 5.5). Beside basic statistics on 

the current run, the batch run window displays (in two separate panels) the log file information on the current run 
and on the overall batch. Two buttons allow for stopping either the current run or the entire batch of runs.

✓ The result trees of all replicates of all runs are automatically added to the ‘TreeViewer’.

5.8.  Building batch files manually
Instead of using the GUI, you can manually build Nexus batch files. As an example, the file below 
will run the single dataset of 15 taxa and 100 characters first with the JC model then with the GTR 
model + gamma-distributed rate heterogeneity. 
The full list of MetaPIGA commands for manually building batch files are available in the Appen-
dix 1.

Check the end of section 5.2 for instructions on how running MetaPIGA in command line (this 
is particularly useful if you want to send jobs to a distant server).

#NEXUS
[Metapiga - LANE (Laboratory of Artificial and Natural Evolution, University of Geneva)]

BEGIN BATCH;
RUN LABEL=15-100 DATA=data_1 PARAM=param_1;
RUN LABEL=15-100_1 DATA=data_1 PARAM=param_2;
END;

BEGIN METAPIGA;
[BATCHLABEL=param_1]
HEURISTIC CP CONSENSUS=STOCHASTIC OPERATOR=SUPERVISED NPOP=4 NIND=4 TOLERANCE=0.05 
HYBRIDIZATION=0.1 SELECTION=IMPROVE RECOMBINATION=0.1 OPERATORAPPLIEDTO=IND NCORE=1;
EVALUATION MODEL=JC DISTRIBUTION=NONE PINV=0.0;
OPTIMIZATION ENDONLY ALGO=GA TARGET{ BL };
STARTINGTREE GENERATION=LNJ(0.1) 
MODEL=JC DISTRIBUTION=NONE PINV=0.0;
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OPERATORS { TXS(2) STS(2) TBR NNI SPR BLM } SELECTION=RANDOM;
SETTINGS  LABEL=15-100;
STOPAFTER AUTO=200 CONSENSUS MRE=0.03 GENERATION=5 INTERVAL=10;
REPLICATES AUTOSTOP=MRE(0.05) RMIN=100 RMAX=10000 INTERVAL=10 PARALLEL=1;
OUTGROUP { ANABAENA_SP2 };
END;

BEGIN METAPIGA;
[BATCHLABEL=param_2]
HEURISTIC CP CONSENSUS=STOCHASTIC OPERATOR=SUPERVISED NPOP=4 NIND=4 TOLERANCE=0.05 
HYBRIDIZATION=0.1 SELECTION=IMPROVE RECOMBINATION=0.1 OPERATORAPPLIEDTO=IND NCORE=1;
EVALUATION 
MODEL=GTR RATEPARAM{ A(0.5) B(0.5) C(0.5) D(0.5) E(0.5)} DISTRIBUTION=GAMMA(4) 
DISTSHAPE=1.0 PINV=0.0;
OPTIMIZATION ENDONLY ALGO=GA TARGET{ BL R GAMMA };
STARTINGTREE GENERATION=LNJ(0.1) MODEL=JC DISTRIBUTION=NONE PINV=0.0;
OPERATORS { TXS(2) STS(2) TBR NNI SPR BLM RPM(ALL) GDM } SELECTION=RANDOM;
SETTINGS  LABEL=15-100_1;
STOPAFTER AUTO=200 CONSENSUS MRE=0.03 GENERATION=5 INTERVAL=10;
REPLICATES AUTOSTOP=MRE(0.05) RMIN=100 RMAX=10000 INTERVAL=10 PARALLEL=1;
OUTGROUP { ANABAENA_SP2 };
END;

BEGIN DATA;
[BATCHLABEL=data_1]
 DIMENSIONS NTAX=15 NCHAR=100;
 FORMAT DATATYPE=DNA MISSING=? GAP=- SYMBOLS="01" LABELS ITEMS=STATES STATESFORMAT-
=STATESPRESENT NOTOKENS;
 MATRIX
Anabaena_sp2! ! CAAGATTACAGACTAACTTATTACACACCTGATTACACACCTAAAGATACAGATATTCTGGCGGCATTCCGTGTTACACCCCAGCCCGGAGTTCCCTTTG
Chara_conniv! ! AAAGATTACAGATTAACTTACTATACTCCTGAGTATAAAACTAAAGATACTGACATTTTAGCTGCATTTCGTGTAACTCCACAACCTGGCGTTCCACCTG
Chlor_ell! ! AAAGACTACCGTTTAACTTACTATACTCCTGATTACCAACCAAAAGACACTGATATTCTTGCAGCGTTCCGTATGACTCCTCAACCAGGTGTTCCACCAG
Volvox_ro! ! AAAGATTATCGTTTAACATACTACACACCTGACTATGTAGTAAAAGACACTGACATCTTAGCAGCATTTCGTATGACTCCACAACCAGGTGTTCCACCTG
Sirogonium_melanosp! AAAGATTACAGACTTACATATTACACTCCTGAATATGAGACCAAAGAAACTGATATTTTAGCTGCATTCCGCATGACTCCTCAGCCTGGAGTACCACCTG
Zygnema_peliosp!! AAAGATTACAGACTTACCTACTATACTCCTGATTATGAGACCAAAGAAACCGACATTTTAGCTGCATTCCGCATGACTCCTCAAGCTGGAGTTCCACCAG
Conocephalum_92!! AAAGATTATCGATTAACTTATTATACTCCGGATTATGAAACTAAAGATACGGATATTTTAGCAGCATTTAGAATGACTCCTCAGCCTGGGGTACCAGCAG
Dumortiera_100! ! AAAGATTATCGATTAACTTATTACACTCCGGATTATGATACCAAGGATACAGATATTTTGGCAGCCTTTAGAATGACTCCTCAGCCTGGAGTACCAGCAG
Marchantia_5! ! AAAGATTATCGATTAACTTATTACACTCCGGATTATGAGACCAAGGATACGGATATTTTAGCAGCATTTAGAATGACTCCTCAGCCTGGAGTTCCAGCGG
Bazzania_jm! ! AAAGATTATAGATTAACCTATTATACGCCTGAATATGAGACCAAAGAGACAGATATTTTGGCAGCATTTCGTATGACTCCCCAACCGGGAGTACCACCTG
Metzgeria_3! ! AAAGATTACAGATTAAATTATTACACTCCAGATTATGAAACTAAAGATACAGATATTCTAGCAGCATTTCGTATGACCCCTCAGCCTGGAGTACCAGAAG
Porella_4! ! AAAGATTATAGATCAACTTATTATACTCCCGACTATGAAACAAAGGAGACAGATATTTTAGCAGCATTTCGTATGACTCCTCAACCTGGAGTACCAGAAC
Anthoceros_6! ! AAAGATTATAGATTAACCCATTATACCCCTGATTACGAGACCAAGGATACTGATATTTTGGCAGCGTCTTGAATGACTCCTTAACCAGGGGTGCCACCTG
Tetraphis_9! ! ?????????AGATTAACTTATTACACTCCAGATTATGAGACCAAAGAGACCGATATTTTAGCAGCATTTCGAATGACTCCTCAACCCGGAGTACCACCTG
Sphagnum_jm! ! AAAGATTACAGGTTGACTTATTACACCCCGGAGTATGCTGTCAAAGATACCGACATTTTGGCAGCATTTCGAATGACTCCTCAACCTGGAGTACCACCCG

;
END;
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5.9.   The ‘Tools’ Menu
In addition to functionalities discussed above (the ‘TreeViewer’, section 5.6.1; the ‘Ancestral states 
reconstruction’ panel, section 5.6.2; and the ‘Memory settings’ window, Fig. 1a), the ‘Tools’ menu 
(Fig. 27a) also gives access to a ‘Tree Generator’, a ‘Consensus Tree’ builder, and a tool for com-
puting pairwise distances. The ‘Tree Generator’ (Fig. 27b) allows for the generation of the NJ tree 
or any number of Loose Neighbor Joining (LNJ; section 5.4.3) or random trees. The trees generated 
are automatically transferred to the ‘TreeViewer’ under appropriate names (e.g., NJ, LNJ_1, LNJ_2, 
RANDOM_1, RANDOM_2). 

a.     b.

    

Fig. 27: (a) The Tools menu; (b), the Tree Generator.

In the ‘Consensus tree builder’ (Fig. 28a), trees in the left panel (corresponding to all trees from the 
‘TreeViewer’) can be moved to the right panel for building a majority-rule consensus tree (with fre-
quencies of clades) which is then automatically added to the TreeViewer under a chosen name 
(“my_consensus_tree”  in Fig. 28a). The pairwise distances tool (Fig. 28b) allows for  computing 
pairwise distances (among sequences of the active dataset) in the form of absolute numbers of dif-
ferences or various distances: uncorrected (none) or corrected following a nucleotide or amino-acid 
or Codon substitution model with or without rate heterogeneity. Distances can be exported to a text 
file for spreadsheet applications such as Excel. 

a.       b.

   

Fig. 28: (a) the Consensus tree builder; (b) the tool for computing pairwise distances.
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5.10.   Troubleshooting
	

 Please, don’t hesitate to contact us (Dorde.Grbic@unige.ch or michel.milinkovitch@unige.ch) 
if you encounter problems or bugs. We are also open to suggestions for improving the software. 

A few problems that can arise when using MetaPIGA are listed below.

Launching
When launching, MetaPIGA checks for the availability of updates (unless you have used the argu-
ment [noupdate] in command line). If you are connected to the internet, and there is no update to 
download, MetaPIGA will simply proceed with launching. If there is an update available, 
MetaPIGA will request your authorization to perform that update. If you are not correctly connected 
to the internet when launching the software, MetaPIGA will simply proceed with launching.

Java errors at launch
✓ The Java 1.6 Virtual Machine (VM) must be installed on your computer for running MetaPIGA. 

If you only have earlier Java version(s) installed, your computer will complain, e.g., with an er-
ror like that shown in Fig. 29. The Java 1.6 VM can be installed for Windows and Linux at 
http://java.com/en/download/manual.jsp. For Mac OSX, simply run the ‘Software Update’ fea-
ture available on the ‘Apple menu’. To check, on your Mac, if Java 6 is installed and active, sim-
ply launch the ‘Terminal.app’ available in the “Utilities” sub-folder of the “Applications” 
folder. Then check your Java version by typing ‘java -version’, and pressing ENTER. If you are 
using the Snow Leopard Mac OS (OS X 10.6), you can check the version(s) of Java installed on 
your machine by launching the ‘Java Preferences.app’ available in the “Utilities” sub-folder of 
the “Applications” folder. Make sure that Java 6 (or later) is in the list AND active (i.e., marked 
as in Fig. 30). You DON’T need to remove earlier Java versions (that might be required for older 
softwares). Note that if your Mac OS is older than 10.5, it will not support Java 1.6 ... hence, you 
will not be able to run MetaPIGA.  

Fig. 29: Error message at launch due to the absence 
of a Java 1.6 (or later) VM.

Fig. 30: The Java Preferences utility on Mac OS X.

✓ If MetaPIGA crashes at launch, it can also be due to a lack of memory. Try closing other applica-
tions, or change the maximum amount of memory allowed to MetaPIGA: in the file 
‘mp2_console.vmoptions’ (that you can find at the root of the MetaPIGA folder, i.e., where the 
program is installed) , set the Xmx value (and not the Xms value) to a lower value (expressed in 
megabytes; this value must be a multiple of 256). Note however that, to avoid problems, we 
made the installer allocate to MetaPIGA half of the memory available on your running machine. 
This should insure MetaPIGA to launch properly, even if other programs are running. Once 
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MetaPIGA has launched, the ‘memory settings’ (in the ‘Tools’ menu of MetaPIGA) allows 
changing the amount of memory allocated to MetaPIGA. The maximum value available in 
‘memory settings’ is 1536 Mb on a 32-bit system (i.e., the maximum allowed by java on such a 
system) ... even if the computer is equipped with more than 2Go of RAM. On the other hand, the 
maximum value available on a 64-bit system (i.e., most of modern machines) can be much 
higher than 1536 Mb but is constrained to the amount of memory available on that machine mi-
nus 512Mb.

Recovering results if a crash occurs
A ‘Results.nex’ file is written to the Results directory (see end of section 5.4.5) when the search is 
completed. On the other hand, the ‘ConsensusTree.tre’ file is automatically updated in the run di-
rectory during the search. Hence, if a crash occurs, for example after a significant running time in-
volving a number of replicates, the ‘ConsensusTree.tre’ file (summarizing all replicates that accu-
mulated before the crash) can be loaded and visualized in MetaPIGA after restarting. As the name 
of the tree includes the number of replicates, you will know when the crash occurred. As the con-
sensus tree file is in Newick format, it can also be loaded in tree viewing softwares such as:
-FigTree (http://tree.bio.ed.ac.uk/software/figtree/) 
-TreeView (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html). 

Others

✓ When negative eigenvalues are encountered under GTR, an error message is generated and the 
search crashes.

✓ Sequences too dissimilar (>0.75 for DNA sequences, >0.95 for Protein sequences, and > 0.5 for 
standard binary data) can cause an error when computing distance matrices. The data quality 
control button (i.e., ‘scissor’ button, section 5.2.2) and the ‘check for saturation’ function in the 
‘Dataset’ menu allow avoiding that problem.
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available through the corresponding links):
• The CERN Colt Scientific library 1.2.0 for pseudorandom number generation and statistics: 

http://acs.lbl.gov/software/colt/
• JAMA : A Java Matrix Package for matrix manipulations and eigen values decomposition: 

http://math.nist.gov/javanumerics/jama/
• The BioJava library to parse NEXUS files: http://www.biojava.org/

BioJava: an Open-Source Framework for Bioinformatics 
R.C.G. Holland; T. Down; M. Pocock; A. Prlić; D. Huen; K. James; S. Foisy; A. Dräger; A. 
Yates; M. Heuer; M.J. Schreiber
Bioinformatics (2008) 24 (18): 2096-2097; doi: 10.1093/bioinformatics/btn397
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7.	
  	
  	
  Appendix	
  1:	
  The	
  MetaPIGA	
  commands

MetaPIGA	
  2	
  requires 	
  only	
  one	
  thing	
  to	
  run:	
  a 	
  nexus 	
  input	
  file.	
  This 	
  file	
  must	
  contain	
  your	
  sequence	
  
data	
  following	
   the	
  standard	
  Nexus	
  data 	
  structure,	
   i.e.,	
   using	
  data	
  blocks 	
  (or	
   taxa	
  +	
   characters	
  
blocks).	
  This	
  file	
  can	
  be	
  loaded	
  and	
  run	
  either	
  using	
  the 	
  menu-­‐driven	
  interface 	
  (GUI)	
  of	
  MetaPIGA	
  
2	
  or	
  in	
  command	
  line.
All 	
  menus 	
  are 	
  described	
  in	
  detail 	
  above.	
  However,	
  the	
  user	
  can	
  also	
  choose	
  to	
  include	
  all 	
  custom-­‐
ized	
  seMngs 	
  of	
  MetaPIGA-­‐2	
  in	
  the	
  Nexus 	
  input	
  file	
  and	
  send	
  it	
  to	
  the	
  program	
  for	
  running	
  without	
  
the	
  use	
  of	
  the	
  interface.	
  This 	
  is 	
  parNcularly	
  useful 	
  for	
  performing	
  unsupervised	
  successive	
  mulNple	
  
long	
  runs	
  (batch	
  files).	
  In	
  that	
  case,	
  the	
  customized	
  seMngs	
  of	
  MetaPIGA	
  must	
  be	
  included	
  in	
  the	
  
Nexus	
  input	
  file 	
  in	
  the 	
  form	
  of	
  a 	
  ‘metapiga 	
  block’.	
  The 	
  structure	
  of	
  this 	
  block	
  is 	
  described	
  hereaf-­‐
ter.	
  Note	
  that,	
  if	
  you	
  don’t	
  like	
  typing	
  the	
  parameter	
  seMngs	
  yourself,	
  you	
  can	
  use	
  the	
  MetaPIGA-­‐2	
  
user	
  interface	
  to	
  generate,	
  save,	
  and	
  run	
  batch	
  files.	
  

ConvenNons:
When	
  a 	
  parameter	
  is 	
  associated	
  with	
  informaNon	
  between	
  round	
  parentheses	
  (	
  ),	
  there 	
  must	
  be	
  
no	
  blank	
  before	
  or	
  within	
  the	
  parentheses.	
  	
  For	
  example:	
  

DISTRIBUTION = GAMMA(4) 
cannot	
  be	
  wriTen

DISTRIBUTION = GAMMA (4)
nor

DISTRIBUTION = GAMMA( 4 )
nor

DISTRIBUTION = GAMMA ( 4 )

All 	
  parameters 	
  between	
  squared	
  brackets 	
  [	
  ]	
  are	
  opNonal 	
  and	
  can	
  be 	
  omiTed,	
  and	
  MetaPIGA	
  will	
  
then	
   use 	
  default	
   values	
   (underlined	
   in	
   the	
  block	
   descripNon).	
   DescripNon	
   of	
   the 	
  commands 	
  is	
  
given	
  in	
  the	
  above	
  user	
  manual	
  (SecNon	
  5.3:	
  ‘Dataset	
  seMngs’).

Batch files
You	
  can	
  easily	
  create 	
  batch	
  files,	
  to	
  run	
  mulNple	
  analyses 	
  automaNcally.	
  Batch	
  files	
  are	
  nexus 	
  files	
  
in	
  which	
  you	
  can	
  add	
  as 	
  many	
  data	
  block,	
  metapiga	
  blocks,	
  and	
  tree	
  blocks	
  as 	
  you	
  wish.	
  You	
  must	
  
add	
  a	
  comment	
  in	
  the	
  first	
  line	
  of	
  each	
  metapiga 	
  block	
  in 	
  the	
  form	
  of	
  a 	
  label	
  using	
  [BATCHLABEL = 
label].	
  Then,	
  create	
  a	
  batch	
  block	
  that	
  associates 	
  each	
  run	
  to	
  (i)	
  a	
  data 	
  block	
  and	
  (ii)	
  a	
  metapiga	
  
block	
  using	
  those	
  labels.	
  The	
  use	
  of	
  a	
  tree	
  block	
  is	
  opNonal.
For	
  example,	
  to	
  run	
  a	
  given	
  dataset	
  with	
  2	
  different	
  sets 	
  of	
  parameters 	
  (the	
  second	
  requiring	
  user-­‐
defined	
  starNng	
  trees),	
  the	
  batch	
  file	
  will	
  look	
  like	
  this:
BEGIN BATCH;

RUN LABEL=’run1’ DATA=label1 PARAM=label1;
RUN LABEL=’run2’ DATA=label1 PARAM=label2 TREE=label2;

END;
BEGIN METAPIGA; [BATCHLABEL = label1]
…
END;
BEGIN METAPIGA; [BATCHLABEL = label2]
…
END;
BEGIN DATA; [BATCHLABEL = label1]
…
END;
BEGIN TREE; [BATCHLABEL = label2]
…
END;

MetaPIGA 3.0 manual    p41



BATCH Block
BEGIN BATCH;
RUN LABEL=’run_label’ DATA=data_block_label 
PARAM=metapiga_block_label [TREES=tree_block_label];
RUN …

END;

METAPIGA Block
BEGIN METAPIGA;

 [HEURISTIC 
‘HC [RESTART = nbr_of_restart]
| SA [COOLINGSCHEDULE = ‘LUNDY | RP(delta) | CAUCHY | BOLTZMANN | GEOM(alpha) 
| LIN | TRI | POLY | EXP | LOG | PER | SPER | TANH | COSH’] [LunC = lundy_c] 
[LunALPHA = lundy_a] [INITACCEPT = value] [FINALACCEPT = value] [DELTAL = 
‘PERCENT[(P)] | BURNIN’] [REHEATING = ‘DECREMENTS(d) | THRESHOLD(p) | NEVER’] 
[COOLING = ‘STEPS(steps) | SF(s,f)’] [DYNCS] 
| GA [NIND = individuals] [SELECTION = ‘RANK | TOURNAMENT | REPLACEMENT[(S)] 
| IMPROVE | KEEPBEST’] [RECOMBINATION = rate] [OPERATORAPPLIEDTO = ‘STEP | 
IND’] 
| CP [CONSENSUS = ‘STRICT | STOCHASTIC’] [OPERATOR = BLIND | SUPERVISED] [NPOP 
= populations] [NIND = individuals] [TOLERANCE = tolerance] [HYBRIDIZATION 
= rate] [SELECTION = ‘RANK | TOURNAMENT | REPLACEMENT[(S)] | IMPROVE | KEEP-
BEST’] [RECOMBINATION = rate] [OPERATORAPPLIEDTO = ‘STEP | POP | IND’] [NCORE 
= cores]’ ;]

[EVALUATION [RATE = ‘BRANCH | TREE’] [DATATYPE=CODON CODONRANGE{start_position-
end_position}] [MODEL = ‘GTR | TN93 | HKY85 | K2P | JC | GTR20 | WAG | 
JTT | DAYHOFF | VT | BLOSUM62 | CPREV | MTREV | RTREV | MTMAM | POISSON 
| GTR2 | ECM | GY’] [] [RATEPARAM {param(value) …}] [AAFREQ = ‘EMPIRICAL | 
ESTIMATED’] [DISTRIBUTION = ‘NONE | GAMMA(subsets) | VDP(subsets)’] [DIST-
SHAPE = shape] [PINV = proportion_of_invariant];]

[SPECIFICPARTPARAM PARTNAME = charset-name [RATEPARAM {param(value) …}] [DIST-
SHAPE = shape] [PINV = proportion_of_invariant];]

[OPTIMIZATION ‘NEVER | CONSENSUSTREE | ENDSEARCH | DISC(s) | STOCH(p)’ [ALGO = 
algorithm] [TARGET {param …}] ;]

[STARTINGTREE [GENERATION = ‘NJ, LNJ(range), RANDOM, GIVEN’] [MODEL = ‘GTR | 
TN93 | HKY85 | K2P | JC | GTR20 | POISSON | GTR2 | NONE’] [DISTRIBUTION = 
‘NONE | GAMMA(shape)| VDP(subsets)’]  [PINV = invariant] [PI = ‘EQUAL | 
ESTIMATED | CONSTANT’];]

[OPERATORS {operator[(parameter)] [operator[(parameter)] …]} [SELECTION = 
‘RANDOM | ORDERED | FREQLIST’] ;]

[FREQUENCIES {operator(frequency) …} ;] 
[DYNAMICFREQ DYNOPERATORS {operator …} [DINT = interval] [DMIN = minimum_fre-

quency];]
[SETTINGS [REMOVECOL = ‘NONE | GAP | NGAP’] [DIR = ’output_directory’] [LABEL 

= ’run_label’] [GRID [SERVER = address] [CLIENT = id] [MODULE = id]];]
[STOPAFTER [STEPS = steps] [TIME = hours] [AUTO = steps [AUTOTHRESHOLD = 

value]] [CONSENSUS [MRE = error] [GENERATION = steps] [INTERVAL = steps]] 
[NECESSARY {stop_condition …}];]

[REPLICATES [AUTOSTOP = ‘NONE | MRE[(error)]’] [RNUM = nbr_rep] [RMIN = 
nbr_rep] [RMAX = nbr_rep] [INTERVAL = interval] [PARALLEL = cores];]

[OUTGROUP {taxa …} ;]
[DELETE {taxa …} ;]
[CHARSET NAME = charset-name SET{character-set …} ;] …
[EXCLUDE {charset …} ;]
[PARTITION {charset …} ;]
[LOG {logFile …} ;]

END;
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Description of the parameters:

1. HEURISTIC –	
  By	
  default,	
  Metapiga	
  uses	
  the	
  metaGA	
  heurisNc	
  (i.e.,	
  a	
  geneNc	
  algorithm	
  with	
  consensus	
  pruning;	
  
see	
  Lemmon	
  &	
  Milinkovitch	
  2002	
  for	
  details).	
  
• HC –	
  Hill	
  Climbing.	
  Tree	
  space	
  is	
  explored	
  using	
  local	
  perturbaNons	
  (of	
  topology	
  and/or	
  branch	
  lengths	
  

and/or	
  model	
  parameters).	
  New	
  trees	
  with	
  improved	
  likelihood	
  are	
  always	
  accepted	
  whereas	
  trees	
  with	
  
worse	
  score	
  are	
  always	
  discarded.	
  This	
  is	
  the	
  ‘stochasNc	
  hill	
  climbing’	
  heurisNc.	
  We also implement a meta-
heuristic called 'random-restart hill climbing'. When the RESTART	
  parameter	
  is	
  set	
  to	
  a	
  value	
  greater	
  than	
  0, 
RESTART+1	
  hill climbings are iteratively performed, each time with a different initial tree. Among the RE-
START+1 solution trees, only the best is kept.
Note that, when choosing the ‘Neighbor Joining’ starting-tree option (see STARTINGTREE parameter), the NJ 
tree will only be used for the first hill climbing, and Loose NJ trees will be generated for all restarts. Like-
wise, when choosing 'user trees' but the number of provided starting trees is smaller than RESTART+1, LNJ 
random trees will be generated for the missing starting trees. Note also that the stop conditions (see	
  STOPAF-
TER parameter) are defined for one hill climbing. For example, when choosing 10 restarts and ‘2000 steps’ 
as the stop condition, 11 hill climbing of 2000 steps will be performed, but only the best scored tree, among 
the 11 results, will be kept.

• SA – Simulated	
  Annealing.	
  StarNng	
  from	
  a	
  single	
  tree,	
  tree	
  space	
  is	
  explored	
  using	
  local	
  perturbaNons	
  (of	
  
topology	
  and/or	
  branch	
  lengths	
  and/or	
  model	
  parameters).	
  New	
  trees	
  with	
  improved	
  likelihood	
  are	
  always	
  
accepted,	
  whereas	
  trees	
  with	
  worse	
  score	
  are	
  accepted	
  with	
  a	
  probability	
  	
  which	
  is	
  a	
  funcNon	
  of	
  both	
  the	
  
proporNonate	
  decrease	
  in	
  score	
  and	
  a	
  control	
  parameter	
  called	
  "temperature".	
  Much	
  addiNonal	
  informa-­‐
Non	
  is	
  available	
  in	
  Kirkpatrick	
  et	
  al.,	
  OpNmizaNon	
  by	
  Simulated	
  Annealing,	
  Science,	
  220,	
  4598,	
  671-­‐680	
  
(1983).

§ SCHEDULE – The	
  “cooling	
  schedule”	
  describes	
  how	
  the	
  “temperature”	
  decreases	
  during	
  the	
  run.
	
  is	
  the	
  temperature	
  aker	
  	
  decrements	
  and	
  	
  is	
  the	
  maximum	
  number	
  of	
  temperature	
  decrements	
  be-­‐
fore	
  reseNng	
  the	
  temperature	
  to	
  the	
  starNng	
  temperature	
  	
  (see	
  REHEATING parameter	
  
below).Except	
  for	
  the	
  LUNDY	
  cooling	
  schedule,	
  	
  (and	
  when	
  it	
  applies)	
  are	
  computed	
  as	
  follows:
where	
  	
  is	
  an	
  upper	
  bound	
  on	
  the	
  change	
  in	
  likelihood,	
  	
  is	
  the	
  iniNal	
  and	
  	
  the	
  final	
  acceptance	
  parame-­‐
ters	
  (see	
  below).Available	
  schedules	
  are	
  :

o LUNDY - The	
  cooling	
  schedule	
  described	
  by	
  Lundy	
  (1985).	
  
with	
  	
  	
  
being	
  the	
  parameter	
  that	
  controls	
  the	
  rate	
  of	
  cooling	
  (its	
  value	
  is	
  <	
  1)	
  where	
  	
  is	
  the	
  number	
  of	
  
sequences,	
  (taxa)	
  is	
  the	
  number	
  of	
  sites,	
  and	
  	
  are	
  set	
  between	
  0	
  and	
  1	
  (see	
  C	
  and	
  ALPHA	
  pa-­‐
rameters	
  below)	
  and	
  	
  is	
  the	
  log	
  likelihood	
  of	
  the	
  neighbor	
  joining	
  tree.	
  It’s	
  the	
  default	
  cooling	
  
schedule.

o RP(delta) – A	
  raNo-­‐percent	
  cooling	
  schedule.	
  
o CAUCHY – Fast	
  Cauchy	
  schedule.	
  
o BOLTZMANN – Boltzmann	
  schedule.
o GEOM(alpha) – Geometric	
  schedule.	
  
o LIN – Linear	
  schedule.	
  
o TRI – Triangular	
  schedule.	
  
o POLY – Polynomial	
  schedule.	
  
o EXP – Transcendental	
  (exponenNal)	
  schedule.	
  
o LOG – Transcendental	
  (logarithmic)	
  schedule.	
  
o PER – Transcendental	
  (periodic)	
  schedule.
o SPER – Transcendental	
  (smoothed	
  periodic)	
  schedule.	
  
o TANH – Hyperbolic	
  (tanh)	
  schedule.	
  
o COSH – Hyperbolic	
  (cosh)	
  schedule.	
  

§ LUNC – The	
  parameter	
  	
  used	
  in	
  the	
  LUNDY	
  cooling	
  schedule.	
  You	
  can	
  set	
  its	
  value	
  between	
  [0,1]	
  and	
  
the	
  default	
  value	
  is	
  0.5.

§ LUNALPHA – The	
  parameter	
  	
  used	
  in	
  the	
  LUNDY	
  cooling	
  schedule.	
  You	
  can	
  set	
  its	
  value	
  between	
  [0,1]	
  
and	
  the	
  default	
  value	
  is	
  0.5.
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§ INITACCEPT – It’s	
  the	
  iniNal	
  maximum	
  probability	
  ()	
  to	
  accept	
  a	
  tree	
  with	
  a	
  ‘worse’	
  likelihood.	
  
Hence,	
  it	
  will	
  define	
  the	
  starNng	
  temperature	
  used	
  when	
  simulated	
  annealing	
  starts	
  or	
  when	
  the	
  
temperature	
  is	
  reset	
  (see	
  REHEATING below).	
  It’s	
  a	
  probability,	
  chosen	
  between	
  [0,	
  1],	
  is	
  set	
  to	
  0.7	
  
by	
  default.	
  Used	
  with	
  all	
  cooling	
  schedules	
  except	
  LUNDY.

§ FINALACCEPT – It’s	
  the	
  final	
  maximum	
  probability	
  to	
  accept	
  a	
  tree	
  with	
  a	
  ‘worse’	
  likelihood	
  (),	
  so	
  it	
  
will	
  define	
  the	
  ending	
  temperature	
  used	
  when	
  simulated	
  annealing	
  should	
  end	
  or	
  before	
  reseNng	
  
the	
  temperature	
  (see	
  REHEATING below).	
  It’s	
  a	
  probability,	
  chosen	
  between	
  [0,	
  1],	
  must	
  be	
  smaller	
  
than	
  INITACCEPT	
  and	
  is	
  set	
  to	
  0.01	
  by	
  default.	
  Only	
  used	
  with	
  LIN,	
  TRI,	
  POLY,	
  EXP,	
  LOG,	
  PER,	
  SPER,	
  
HYPTANH and	
  HYPCOSH cooling	
  schedules.

§ DELTAL – Determines	
  how	
  	
  is	
  iniNalized.	
  	
  is	
  used	
  to	
  compute	
  the	
  starNng	
  temperature,	
  and	
  is	
  the	
  
maximum	
  distance	
  between	
  a	
  current	
  soluNon	
  and	
  a	
  worse	
  soluNon	
  that	
  could	
  be	
  accepted	
  with	
  a	
  
probability	
  of	
  .

o PERCENT(p) – 	
  is	
  set	
  to	
  a	
  percentage	
  p	
  of	
  the	
  Neighbor	
  Joining	
  Tree	
  log	
  likelihood.	
  You	
  can	
  
set	
  the	
  value	
  of	
  p	
  between	
  [0,1]	
  and	
  the	
  default	
  is	
  0.001	
  (0.1%	
  of	
  the	
  NJT).	
  

o BURNIN – Selected	
  operators	
  are	
  used	
  on	
  the	
  starNng	
  tree	
  for	
  a	
  burn-­‐in	
  period	
  of	
  20	
  appli-­‐
caNons	
  for	
  each	
  operator.	
  The	
  maximum	
  change	
  in	
  log	
  likelihood	
  observed	
  during	
  this	
  period	
  
is	
  used	
  as	
  .

§ REHEATING – Determines	
  under	
  which	
  condiNon	
  the	
  temperature	
  is	
  reset	
  to	
  the	
  iniNal	
  starNng	
  
temperature.

o NEVER – Temperature	
  is	
  never	
  reset,	
  but	
  this	
  opNon	
  can	
  only	
  be	
  selected	
  with	
  LUNDY,	
  RP,	
  
CAUCHY,	
  BOLTZMANN and	
  GEOMETRIC cooling	
  schedules.

o DECREMENTS(d) – Temperature	
  is	
  reset	
  when	
  it	
  has	
  decreased	
  d	
  Nmes.	
  It’s	
  the	
  default	
  RE-
HEATING opNon,	
  usable	
  with	
  all	
  cooling	
  schedules.

o THRESHOLD(p) – Temperature	
  is	
  reset	
  when	
  it	
  aTains	
  a	
  threshold	
  equal	
  to	
  	
  Note	
  that	
  	
  must	
  
be	
  smaller	
  than	
  1	
  and	
  sufficiently	
  small	
  (0.001	
  is	
  the	
  default	
  value).	
  This	
  REHEATING opNon	
  
can	
  only	
  be	
  used	
  with	
  LUNDY,	
  RP,	
  CAUCHY,	
  BOLTZMANN and	
  GEOMETRIC cooling	
  schedules.

§ COOLING – Establishes	
  the	
  number	
  of	
  Nmes	
  a	
  tree	
  is	
  modified	
  before	
  the	
  temperature	
  is	
  decreased.	
  
You	
  can	
  choose	
  between	
  2	
  cooling	
  types:

o 	
  STEPS(steps) – Stay	
  at	
  the	
  same	
  temperature	
  for	
  a	
  given	
  number	
  of	
  steps.	
  	
  
o SF(s,f) – Lower	
  the	
  temperature	
  aker	
  s	
  successes	
  or	
  f	
  failures,	
  whichever	
  comes	
  first.	
  

Successes	
  are	
  tree	
  modificaNons	
  that	
  improve	
  the	
  likelihood	
  and	
  failures	
  are	
  those	
  that	
  do	
  
not.	
  This	
  COOLING	
  is	
  used	
  by	
  default,	
  with	
  s	
  =10	
  and	
  f	
  =100.

• GA – Gene4c	
  Algorithm. At	
  each	
  step	
  (generaNon)	
  of	
  the	
  heurisNc,	
  each	
  individual	
  of	
  a	
  populaNon	
  of	
  
trees	
  is	
  mutated	
  using	
  the	
  selected	
  operators.	
  Death	
  /	
  survival	
  of	
  individuals	
  is	
  controlled	
  using	
  a	
  selecNon	
  
scheme.

§ NIND – The	
  number	
  of	
  individuals	
  (trees)	
  within	
  the	
  populaNon	
  (set).	
  Set	
  to	
  8	
  by	
  default.
§ SELECTION – The	
  method	
  used	
  to	
  control	
  death	
  /	
  survival	
  of	
  individuals	
  :

o RANK – We	
  implement	
  a	
  rank	
  selecNon	
  similar	
  to	
  that	
  described	
  in	
  (Lewis	
  1998,	
  Mol.	
  Biol.	
  
Evol.	
  15,	
  277-­‐283).	
  The	
  individual	
  having	
  the	
  highest	
  lnL	
  is	
  automaNcally	
  allowed	
  to	
  leave	
  
k=0.25*NIND	
  offspring	
  (i.e.,	
  copies	
  of	
  itself)	
  in	
  the	
  next	
  generaNon.	
  Then,	
  each	
  individual	
  is	
  
assigned	
  a	
  probability	
  p	
  of	
  leaving	
  an	
  offspring	
  as	
  a	
  funcNon	
  of	
  its	
  posiNon	
  in	
  a	
  list	
  in	
  which	
  
individuals	
  are	
  ranked	
  by	
  their	
  score.	
  The	
  probability	
  p	
  for	
  the	
  ith	
  individual	
  of	
  leaving	
  an	
  off-­‐
spring	
  to	
  the	
  next	
  generaNon	
  is	
  equal	
  to:

o TOURNAMENT – Two	
  individuals	
  are	
  drawn	
  randomly	
  from	
  the	
  populaNon	
  of	
  n	
  individuals,	
  and	
  
one	
  offspring	
  is	
  produced	
  from	
  the	
  individual	
  with	
  higher	
  score.	
  Both	
  trees	
  are	
  then	
  placed	
  
back	
  into	
  the	
  maNng	
  populaNon,	
  and	
  the	
  whole	
  process	
  is	
  repeated	
  unNl	
  n	
  offspring	
  have	
  
been	
  generated.	
  This	
  is	
  the	
  default	
  selecNon	
  method.

o REPLACEMENT – Two	
  individuals	
  are	
  drawn	
  randomly	
  from	
  the	
  populaNon	
  of	
  n	
  individuals	
  
and	
  two	
  copies	
  of	
  the	
  beTer	
  individual	
  are	
  returned	
  to	
  the	
  maNng	
  pool	
  (parents	
  are	
  dis-­‐
carded).	
  The	
  process	
  is	
  repeated	
  sn	
  Nmes,	
  where	
  s	
  is	
  the	
  strength	
  of	
  the	
  selecNon	
  (1.0	
  by	
  de-­‐
fault),	
  then	
  the	
  offspring	
  populaNon	
  is	
  generated	
  as	
  an	
  exact	
  copy	
  of	
  the	
  post-­‐selecNon	
  par-­‐
ent	
  populaNon.

o IMPROVE –	
  Only	
  those	
  individuals	
  that	
  have	
  scores	
  beTer	
  than	
  that	
  of	
  the	
  best	
  tree	
  from	
  the	
  
previous	
  generaNon	
  are	
  kept.	
  Each	
  individual	
  that	
  fails	
  this	
  test	
  is	
  discarded	
  and	
  replaced	
  by	
  a	
  
copy	
  of	
  the	
  current	
  best	
  individual.	
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o KEEPBEST – Only	
  the	
  best	
  individual	
  of	
  each	
  populaNon	
  is	
  kept,	
  others	
  are	
  replaced	
  by	
  a	
  
copy	
  of	
  it.

§ RECOMBINATION	
  – Each	
  counter-­‐selected	
  sub-­‐opNmal	
  individual	
  has	
  a	
  probability	
  p	
  (between	
  [0,	
  1]	
  
and	
  set	
  to	
  0.1	
  by	
  default)	
  to	
  recombine	
  with	
  a	
  beTer	
  individual	
  in	
  the	
  populaNon.	
  RecombinaNon	
  is	
  
performed	
  by	
  exchanging	
  subtrees	
  defined	
  by	
  one	
  of	
  the	
  idenNcal	
  taxa	
  parNNons	
  in	
  the	
  two	
  parental	
  
trees	
  (i.e.,	
  one	
  internal	
  branch	
  that	
  defines	
  subtrees	
  including	
  the	
  same	
  taxa	
  but	
  with	
  potenNally	
  
different	
  sub-­‐topologies).	
  If	
  no	
  common	
  branch	
  exists,	
  the	
  offspring	
  is	
  defined	
  as	
  a	
  copy	
  of	
  the	
  best	
  
individual.	
  A	
  recombinaNon	
  event	
  can	
  be	
  viewed	
  as	
  a	
  large	
  number	
  of	
  simultaneous	
  topological	
  mu-­‐
taNons.	
  The	
  exact	
  procedure	
  depends	
  on	
  the	
  selecNon	
  scheme:

o RANK – RecombinaNon	
  is	
  not	
  available	
  under	
  that	
  selecNon	
  scheme.
o TOURNAMENT – With	
  a	
  probability	
  p,	
  the	
  offspring	
  set	
  aker	
  a	
  tournament	
  is	
  not	
  a	
  copy	
  the	
  

individual	
  with	
  higher	
  score	
  but	
  a	
  recombinaNon	
  between	
  the	
  two	
  trees	
  that	
  have	
  been	
  ini-­‐
Nally	
  drawn	
  for	
  tournament.

o REPLACEMENT – With	
  a	
  probability	
  p,	
  only	
  one	
  (instead	
  of	
  two)	
  copy	
  of	
  the	
  beTer	
  individual	
  
is	
  returned	
  to	
  the	
  maNng	
  pool.	
  The	
  second	
  individual	
  returned	
  is	
  a	
  recombinaNon	
  between	
  
the	
  two	
  trees	
  that	
  have	
  been	
  iniNally	
  drawn.

o IMPROVE –	
  Each	
  individual	
  that	
  does	
  not	
  have	
  a	
  score	
  beTer	
  than	
  that	
  of	
  the	
  best	
  tree	
  from	
  
the	
  previous	
  generaNon	
  has	
  a	
  probability	
  p	
  of	
  of	
  leaving	
  an	
  offspring	
  by	
  recombining	
  with	
  the	
  
current	
  best	
  individual.	
  

o KEEPBEST – Each	
  individual	
  that	
  does	
  not	
  have	
  a	
  score	
  beTer	
  than	
  that	
  of	
  the	
  best	
  current	
  
individual	
  has	
  a	
  probability	
  p	
  of	
  of	
  leaving	
  an	
  offspring	
  by	
  recombining	
  with	
  the	
  current	
  best	
  
individual.

§OPERATORAPPLIEDTO – IND is	
  the	
  default
o STEP – At	
  each	
  step	
  of	
  the	
  heurisNc,	
  a	
  single	
  mutaNon	
  operator	
  is	
  selected	
  and	
  applied	
  to	
  

each	
  tree	
  of	
  each	
  populaNon.
o IND – At	
  each	
  step	
  of	
  the	
  heurisNc,	
  each	
  individual	
  is	
  separately	
  assigned	
  a	
  mutaNon	
  opera-­‐

tor.
• CP – Consensus	
  pruning	
  (MetaGA). This	
  is	
  the	
  core	
  of	
  the	
  "metaPopulaNon	
  geneNc	
  Algorithm"	
  (Lemmon	
  

&	
  Milinkovitch,	
  PNAS	
  99:10516-­‐10521	
  (2002)):	
  P	
  sets	
  (populaNons)	
  containing	
  each	
  I	
  trees	
  (individuals)	
  are	
  
forced	
  to	
  cooperate	
  in	
  the	
  search	
  for	
  the	
  opNmal	
  trees.	
  At	
  each	
  step	
  (generaNon)	
  of	
  the	
  heurisNc,	
  individu-­‐
als	
  are	
  mutated	
  following	
  inter-­‐populaNons	
  consensus	
  rules.	
  Death	
  /	
  survival	
  of	
  individuals	
  is	
  defined	
  using	
  
a	
  selecNon	
  scheme.

§ CONSENSUS – STOCHASTIC is	
  chosen	
  by	
  default
o STRICT – Any	
  branch	
  shared	
  by	
  all	
  trees	
  across	
  all	
  populaNons	
  (100%	
  consensus)	
  will	
  not	
  be	
  

mutated.	
  MutaNons	
  on	
  any	
  other	
  branch	
  will	
  be	
  unconstrained.	
  
o STOCHASTIC – Each	
  branch	
  (parNNon)	
  common	
  to	
  at	
  least	
  two	
  trees	
  will	
  be	
  assigned	
  a	
  con-­‐

sensus	
  value.	
  The	
  probability	
  of	
  any	
  mutaNon	
  affecNng	
  that	
  parNNon	
  is	
  1-­‐(consensus	
  
value).Example:	
  if	
  a	
  given	
  branch	
  is	
  shared	
  by	
  12	
  among	
  16	
  trees	
  (e.g.,	
  4	
  populaNons	
  of	
  4	
  in-­‐
dividuals	
  each),	
  any	
  mutaNon	
  affecNng	
  that	
  branch	
  will	
  be	
  accepted	
  with	
  a	
  probability	
  of	
  0.25.	
  
A	
  branch	
  shared	
  by	
  all	
  trees	
  will	
  never	
  be	
  mutated.

§ OPERATOR – If	
  operator	
  is	
  set	
  to	
  BLIND,	
  a	
  mutaNon	
  breaking	
  a	
  consensus	
  won’t	
  be	
  applied	
  and	
  the	
  
tree	
  will	
  remain	
  unchanged	
  unNl	
  the	
  next	
  mutaNon	
  (at	
  generaNon	
  i+1).	
  If	
  operator	
  is	
  set	
  to	
  SUPER-
VISED,	
  the	
  operator	
  will	
  search	
  for	
  candidate	
  mutaNons	
  that	
  don’t	
  break	
  any	
  consensus.	
  If	
  no	
  such	
  
candidate	
  exists,	
  no	
  mutaNon	
  is	
  performed	
  and	
  the	
  tree	
  will	
  remain	
  unchanged	
  unNl	
  the	
  next	
  gen-­‐
eraNon.

§ NPOP – The	
  number	
  of	
  populaNons	
  (sets).	
  Set	
  to	
  4	
  by	
  default.
§ NIND – The	
  number	
  of	
  individuals	
  (trees)	
  within	
  each	
  populaNon	
  (set).	
  Set	
  to	
  4	
  by	
  default.
§ TOLERANCE – The	
  CONSENSUS	
  command	
  constrains	
  how	
  shared	
  branches	
  are	
  modified.	
  The	
  TOLER-

ANCE	
  parameter	
  avoids	
  parNNons	
  to	
  become	
  "frozen",	
  i.e.,	
  inaccessible	
  to	
  mutaNons.	
  The	
  TOLERANCE 
parameter	
  helps	
  avoiding	
  to	
  be	
  trapped	
  in	
  a	
  possible	
  local	
  opNmum.	
  Set	
  to	
  0.5	
  by	
  default.Example:	
  
With	
  "strict	
  consensus"	
  and	
  a	
  tolerance	
  of	
  0.1,	
  any	
  branch	
  shared	
  by	
  all	
  trees	
  is	
  anyway	
  mutated	
  with	
  
a	
  probability	
  of	
  0.1.

§ HYBRIDIZATION – At	
  each	
  generaNon,	
  there	
  is	
  a	
  probability	
  (between	
  [0,	
  1]	
  and	
  set	
  to	
  0.1	
  by	
  de-­‐
fault)	
  that	
  all	
  sub-­‐opNmal	
  individuals	
  from	
  one	
  random	
  populaNon	
  are	
  not	
  mutated	
  but,	
  instead,	
  are	
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recombined	
  with	
  one	
  individual	
  from	
  another	
  populaNon;	
  sub-­‐opNmal	
  individuals	
  from	
  other	
  popu-­‐
laNons	
  experience	
  the	
  normal	
  mutaNon	
  procedure.

§ SELECTION – The	
  method	
  used	
  to	
  control	
  death	
  /	
  survival	
  of	
  individuals	
  :
o RANK – We	
  implement	
  a	
  rank	
  selecNon	
  similar	
  to	
  that	
  described	
  in	
  (Lewis	
  1998,	
  Mol.	
  Biol.	
  

Evol.	
  15,	
  277-­‐283).	
  The	
  individual	
  having	
  the	
  highest	
  lnL	
  is	
  automaNcally	
  allowed	
  to	
  leave	
  
k=0.25*NIND	
  offspring	
  (i.e.,	
  copies	
  of	
  itself)	
  in	
  the	
  next	
  generaNon.	
  Then,	
  each	
  individual	
  is	
  
assigned	
  a	
  probability	
  p	
  of	
  leaving	
  an	
  offspring	
  as	
  a	
  funcNon	
  of	
  its	
  posiNon	
  in	
  a	
  list	
  in	
  which	
  
individuals	
  are	
  ranked	
  by	
  their	
  score.	
  The	
  probability	
  p	
  for	
  the	
  ith	
  individual	
  of	
  leaving	
  an	
  off-­‐
spring	
  to	
  the	
  next	
  generaNon	
  is	
  equal	
  to:

o TOURNAMENT – Two	
  individuals	
  are	
  drawn	
  randomly	
  from	
  the	
  populaNon	
  of	
  n	
  individuals,	
  and	
  
one	
  offspring	
  is	
  produced	
  from	
  the	
  individual	
  with	
  higher	
  score.	
  Both	
  trees	
  are	
  then	
  placed	
  
back	
  into	
  the	
  maNng	
  populaNon,	
  and	
  the	
  whole	
  process	
  is	
  repeated	
  unNl	
  n	
  offspring	
  have	
  
been	
  generated.

o REPLACEMENT – Two	
  individuals	
  are	
  drawn	
  randomly	
  from	
  the	
  populaNon	
  of	
  n	
  individuals	
  
and	
  two	
  copies	
  of	
  the	
  beTer	
  individual	
  are	
  returned	
  to	
  the	
  maNng	
  pool	
  (parents	
  are	
  dis-­‐
carded).	
  The	
  process	
  is	
  repeated	
  sn	
  Nmes,	
  where	
  s	
  is	
  the	
  strength	
  of	
  the	
  selecNon	
  (1.0	
  by	
  de-­‐
fault),	
  then	
  the	
  offspring	
  populaNon	
  is	
  generated	
  as	
  an	
  exact	
  copy	
  of	
  the	
  post-­‐selecNon	
  par-­‐
ent	
  populaNon.

o IMPROVE –	
  Only	
  those	
  individuals	
  that	
  have	
  scores	
  beTer	
  than	
  that	
  of	
  the	
  best	
  tree	
  from	
  the	
  
previous	
  generaNon	
  are	
  kept.	
  Each	
  individual	
  that	
  fails	
  this	
  test	
  is	
  discarded	
  and	
  replaced	
  by	
  a	
  
copy	
  of	
  the	
  current	
  best	
  individual.	
  This	
  is	
  the	
  default	
  selecNon	
  method.	
  

o KEEPBEST – Only	
  the	
  best	
  individual	
  of	
  each	
  populaNon	
  is	
  kept,	
  others	
  are	
  replaced	
  by	
  a	
  
copy	
  of	
  it.

§ RECOMBINATION – Each	
  counter-­‐selected	
  sub-­‐opNmal	
  individual	
  has	
  a	
  probability	
  p	
  (between	
  [0,	
  1]	
  
and	
  set	
  to	
  0.1	
  by	
  default)	
  to	
  recombine	
  with	
  a	
  beTer	
  individual	
  in	
  the	
  populaNon.	
  RecombinaNon	
  is	
  
performed	
  by	
  exchanging	
  subtrees	
  defined	
  by	
  one	
  of	
  the	
  idenNcal	
  taxa	
  parNNons	
  in	
  the	
  two	
  parental	
  
trees	
  (i.e.,	
  one	
  internal	
  branch	
  that	
  defines	
  subtrees	
  including	
  the	
  same	
  taxa	
  but	
  with	
  potenNally	
  
different	
  sub-­‐topologies).	
  If	
  no	
  common	
  branch	
  exists,	
  the	
  offspring	
  is	
  defined	
  as	
  a	
  copy	
  of	
  the	
  best	
  
individual.	
  A	
  recombinaNon	
  event	
  can	
  be	
  viewed	
  as	
  a	
  large	
  number	
  of	
  simultaneous	
  topological	
  mu-­‐
taNons.	
  The	
  exact	
  procedure	
  depends	
  on	
  the	
  selecNon	
  scheme:

o RANK – RecombinaNon	
  is	
  not	
  available	
  under	
  that	
  selecNon	
  scheme.
o TOURNAMENT – With	
  a	
  probability	
  p,	
  the	
  offspring	
  set	
  aker	
  a	
  tournament	
  is	
  not	
  a	
  copy	
  the	
  

individual	
  with	
  higher	
  score	
  but	
  a	
  recombinaNon	
  between	
  the	
  two	
  trees	
  that	
  have	
  been	
  ini-­‐
Nally	
  drawn	
  for	
  tournament.

o REPLACEMENT – With	
  a	
  probability	
  p,	
  only	
  one	
  (instead	
  of	
  two)	
  copy	
  of	
  the	
  beTer	
  individual	
  
is	
  returned	
  to	
  the	
  maNng	
  pool.	
  The	
  second	
  individual	
  returned	
  is	
  a	
  recombinaNon	
  between	
  
the	
  two	
  trees	
  that	
  have	
  been	
  iniNally	
  drawn.

o IMPROVE –	
  Each	
  individual	
  that	
  does	
  not	
  have	
  a	
  score	
  beTer	
  than	
  that	
  of	
  the	
  best	
  tree	
  from	
  
the	
  previous	
  generaNon	
  has	
  a	
  probability	
  p	
  of	
  of	
  leaving	
  an	
  offspring	
  by	
  recombining	
  with	
  the	
  
current	
  best	
  individual.	
  

o KEEPBEST – Each	
  individual	
  that	
  does	
  not	
  have	
  a	
  score	
  beTer	
  than	
  that	
  of	
  the	
  best	
  current	
  
individual	
  has	
  a	
  probability	
  p	
  of	
  of	
  leaving	
  an	
  offspring	
  by	
  recombining	
  with	
  the	
  current	
  best	
  
individual.

§ NCORE – The	
  number	
  of	
  cores/processors	
  assigned	
  for	
  parallel	
  processing.	
  Different	
  populaNons	
  
will	
  be	
  assigned	
  to	
  different	
  cores.	
  Set	
  to	
  1	
  by	
  default	
  (no	
  parallelizaNon).	
  WARNING:	
  this	
  parameter	
  
should	
  be	
  considered	
  in	
  combinaNon	
  with	
  the	
  PARALLEL parameter	
  (in	
  REPLICATES).	
  It	
  is	
  advised	
  to	
  
leave	
  the	
  NCORE	
  parameter	
  to	
  1	
  when	
  you	
  perform	
  replicates	
  with	
  parallelizaNon.

§ OPERATORAPPLIEDTO – IND is	
  the	
  default
o STEP – At	
  each	
  step	
  of	
  the	
  heurisNc,	
  a	
  single	
  mutaNon	
  operator	
  is	
  selected	
  and	
  applied	
  to	
  

each	
  tree	
  of	
  each	
  populaNon.
o POP – At	
  each	
  step	
  of	
  the	
  heurisNc,	
  each	
  populaNon	
  is	
  separately	
  assigned	
  a	
  mutaNon	
  opera-­‐

tor	
  (i.e.,	
  that	
  operator	
  is	
  applied	
  to	
  all	
  individuals	
  within	
  a	
  populaNon).
o IND – At	
  each	
  step	
  of	
  the	
  heurisNc,	
  each	
  individual	
  is	
  separately	
  assigned	
  a	
  mutaNon	
  opera-­‐

tor.
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2. EVALUATION –	
  By	
  default,	
  MetaPIGA	
  evaluates	
  trees	
  with	
  the	
  maximum	
  likelihood	
  criterion	
  using	
  a	
  single	
  rate	
  
matrix	
  R	
  for	
  the	
  TREE,	
  the	
  JC	
  model	
  and	
  no	
  rate	
  heterogeneity.	
  Note	
  that	
  if	
  the	
  dataset	
  is	
  parNNoned	
  with	
  
charsets,	
  some	
  parameters	
  (RATEPARAM, DISTSHAPE, PINV)	
  can	
  be	
  overridden	
  with	
  the	
  SPECIFICPARTPARAM	
  
command	
  for	
  each	
  parNNon.
• RATE –	
  The	
  rate	
  matrix	
  R	
  (by	
  default,	
  MetaPIGA	
  use	
  one	
  R	
  for	
  the	
  TREE):

§ BRANCH – NOT AVAILABLE YET - A	
  different	
  rate	
  matrix	
  R	
  is	
  used	
  for	
  each	
  branch.	
  
§ TREE –	
  A	
  single	
  rate	
  matrix	
  R	
  is	
  used	
  across	
  the	
  whole	
  tree.

• DATATYPE=CODON –	
  This	
  token	
  defines	
  that	
  nucleoNdes	
  in	
  this	
  data	
  set	
  should	
  be	
  interpreted	
  as	
  codons.	
  The	
  
token	
  has	
  to	
  be	
  followed	
  by	
  the	
  CODONRANGE{first_position-last_position} token,	
  where	
  ‘first_position’	
  
and	
  ‘last_position’	
  define	
  the	
  range	
  of	
  nucleoNde	
  indexes	
  that	
  will	
  be	
  interpreted	
  as	
  codons.

• MODEL –	
  Depending	
  on	
  the	
  datatype	
  (DNA	
  or	
  PROTEIN	
  or	
  STANDARD),	
  the	
  default	
  subsNtuNon	
  model	
  is	
  JC,	
  
POISSON,	
  or	
  GTR2,	
  respecNvely.	
  You	
  can	
  set	
  subsNtuNon	
  models	
  with:

§ GTR – General-­‐Time-­‐Reversible	
  model	
  for	
  nucleoNdes.
§ HKY85 – Hasegewa-­‐Kishimo-­‐Yano	
  1985	
  model	
  (nucleoNdes).
§ TN93 – Tamura-­‐Nei	
  1993	
  model	
  (nucleoNdes).
§ K2P – Kimura's	
  2	
  Parameter	
  model	
  (nucleoNdes).
§ JC – Jukes	
  Cantor	
  1969	
  model	
  (nucleoNdes).
§ GTR20 –	
  General-­‐Time-­‐Reversible	
  model	
  for	
  proteins.
§ WAG –	
  Wheland	
  and	
  Goldman	
  model	
  (proteins).
§ JTT –	
  Jones-­‐Taylor-­‐Thornton	
  model	
  (proteins).
§ DAYHOFF –	
  Dayhoff	
  model	
  (proteins).
§ VT –	
  Variable	
  Time	
  subsNtuNon	
  matrix	
  (proteins).
§ BLOSUM62 –	
  BLOSUM62	
  (BLOcks	
  of	
  amino	
  acid	
  SUbsNtuNon	
  Matrix)	
  subsNtuNon	
  matrix	
  (proteins).
§ CPREV –	
  Chloroplast	
  reversible	
  subsNtuNon	
  model	
  (proteins).
§ MTREV –	
  Reversible	
  mitochondrial	
  subsNtuNon	
  model	
  (proteins).
§ RTREV –	
  RtREV	
  subsNtuNon	
  matrix	
  (proteins).
§ MTMAM –	
  Mtmam	
  model	
  (for	
  mitochondrial	
  data)	
  (proteins).
§ POISSON –	
  Poisson	
  model	
  (proteins).
§ GTR2 –	
  General-­‐Time-­‐Reversible	
  model	
  for	
  standard	
  binary	
  data.
§ ECM –	
  Empirical	
  codon	
  model	
  for	
  codon	
  data.
§ GY –	
  Goldman-­‐Yang	
  model	
  for	
  codon	
  data.

• RATEPARAM –	
  Set	
  the	
  values	
  of	
  each	
  parameter	
  of	
  the	
  rate	
  matrix	
  R.
§ A | B | C | D | E	
  – The	
  five	
  parameters	
  that	
  can	
  be	
  set	
  with	
  GTR.	
  Set	
  to	
  0.5	
  by	
  default.
§ K – The	
  kappa	
  parameter	
  of	
  K2P	
  and	
  HKY85.	
  Set	
  to	
  0.5	
  by	
  default.
§ K1 |	
  K2	
  – The	
  2	
  parameters	
  of	
  TN93	
  (respecNvely	
  K1 are	
  transiNons	
  between	
  purines,	
  and	
  K2	
  

transiNons	
  between	
  pyrimidines).	
  Set	
  to	
  0.5	
  by	
  default.
§ AR | AN | AD | … | WY | WV | YV	
  – The	
  189	
  parameters	
  that	
  can	
  be	
  set	
  for	
  GTR20.	
  They	
  

correspond	
  to	
  the	
  upper	
  right	
  triangle	
  of	
  the	
  GTR	
  subsNtuNon	
  matrix,	
  with	
  the	
  20	
  amino	
  acids	
  or-­‐
dered	
  by	
  alphabeNcal	
  order	
  of	
  their	
  3-­‐leTer	
  names	
  (A	
  R	
  N	
  D	
  C	
  Q	
  E	
  G	
  H	
  I	
  L	
  K	
  M	
  F	
  P	
  S	
  T	
  W	
  Y	
  V).	
  For	
  ex-­‐
ample,	
  A<-­‐>R	
  rate	
  is	
  set	
  using	
  AR	
  parameter	
  (RA	
  will	
  not	
  be	
  recognized).	
  Set	
  to	
  0.5	
  by	
  default.

• AAFREQ –	
  Used	
  for	
  empirical	
  protein	
  models	
  with	
  unequal	
  equilibrium	
  state	
  frequencies	
  (EMPIRICAL	
  by	
  
default).

§ EMPIRICAL –	
  Equilibrium	
  amino-­‐acid	
  frequencies	
  are	
  fixed	
  to	
  the	
  empirical	
  values	
  reflecNng	
  esN-­‐
mates	
  of	
  the	
  corresponding	
  model.

§ ESTIMATED –	
  	
  Equilibrium	
  amino-­‐acid	
  frequencies	
  are	
  fixed	
  to	
  those	
  observed	
  in	
  the	
  dataset.
• DISTRIBUTION –	
  The	
  rate	
  heterogeneity	
  (none	
  by	
  default).

§ NONE –	
  No	
  rate	
  heterogeneity
§ GAMMA –	
  	
  Rate	
  heterogeneity	
  following	
  a	
  Gamma	
  distribuNon.	
  The	
  number	
  of	
  rate	
  categories	
  (4	
  by	
  

default)	
  and	
  shape	
  parameter	
  alpha	
  (default=1)	
  can	
  be	
  defined.
• DISTSHAPE - Shape	
  parameter	
  (alpha)	
  of	
  the	
  gamma	
  distribuNon.	
  Set	
  to	
  1.0	
  by	
  default.
• PINV – ProporNon	
  of	
  invariable	
  sites	
  (between	
  0	
  and	
  1).	
  Set	
  to	
  0	
  (no	
  invariant)	
  by	
  default.

3. SPECIFICPARTPARAM –	
  Specific	
  evaluaNon	
  parameters	
  can	
  be	
  set	
  for	
  each	
  charset	
  separately	
  if	
  the	
  dataset	
  is	
  
parNNoned.	
  If	
  no	
  SPECIFICPARTPARAM	
  is	
  defined	
  for	
  a	
  given	
  parNNon,	
  parameters	
  defined	
  with	
  the	
  EVALUATION	
  
command	
  will	
  be	
  used.
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• PARTNAME –	
  The	
  name	
  of	
  the	
  parNNon	
  to	
  which	
  	
  the	
  parameters	
  apply.	
  ATTENTION:	
  the	
  parNNon	
  name	
  
must	
  always	
  be	
  defined	
  before	
  RATEPARAM,	
  DISTSHAPE	
  and	
  PINV.

• RATEPARAM –	
  Set	
  the	
  value	
  of	
  each	
  parameter	
  of	
  the	
  rate	
  matrix	
  R.
§ A | B | C | D | E	
  – The	
  five	
  parameters	
  that	
  can	
  be	
  set	
  with	
  GTR.	
  Set	
  to	
  0.5	
  by	
  default.
§ K – The	
  kappa	
  parameter	
  of	
  K2P	
  and	
  HKY85.	
  Set	
  to	
  0.5	
  by	
  default.
§ K1 |	
  K2	
  – The	
  2	
  parameters	
  of	
  TN93	
  (respecNvely	
  K1 are	
  transiNons	
  between	
  purines,	
  and	
  K2	
  

transiNons	
  between	
  pyrimidines).	
  Set	
  to	
  0.5	
  by	
  default.
§ AR | AN | AD | … | WY | WV | YV	
  – The	
  189	
  parameters	
  that	
  can	
  be	
  set	
  for	
  GTR20.	
  They	
  

correspond	
  to	
  the	
  upper	
  right	
  triangle	
  of	
  the	
  GTR	
  subsNtuNon	
  matrix,	
  with	
  the	
  20	
  amino	
  acids	
  or-­‐
dered	
  by	
  alphabeNcal	
  order	
  of	
  their	
  3-­‐leTer	
  names	
  (A	
  R	
  N	
  D	
  C	
  Q	
  E	
  G	
  H	
  I	
  L	
  K	
  M	
  F	
  P	
  S	
  T	
  W	
  Y	
  V).	
  For	
  ex-­‐
ample,	
  A<-­‐>R	
  rate	
  is	
  set	
  using	
  AR	
  parameter	
  (RA	
  will	
  not	
  be	
  recognized).	
  Set	
  to	
  0.5	
  by	
  default.

• DISTSHAPE - Shape	
  parameter	
  (alpha)	
  of	
  the	
  gamma	
  distribuNon.	
  Set	
  to	
  1.0	
  by	
  default.
• PINV – ProporNon	
  of	
  invariable	
  sites	
  (between	
  0	
  and	
  1).	
  Set	
  to	
  0	
  (no	
  invariant)	
  by	
  default.

4. OPTIMIZATION –	
  For	
  configuring	
  intra-­‐step	
  opNmizaNon	
  frequencies,	
  algorithm	
  and	
  targets.	
  There	
  are	
  5	
  ways	
  of	
  
choosing	
  when	
  MetaPIGA	
  opNmizes	
  the	
  tree	
  during	
  a	
  heurisNc.	
  With	
  NEVER,	
  no	
  opNmizaNon	
  algorithm	
  is	
  applied.	
  
With	
  ENDSEARCH,	
  final	
  trees	
  are	
  opNmized	
  at	
  the	
  end	
  of	
  the	
  heurisNc.	
  With	
  CONSENSUSTREE,	
  only	
  the	
  final	
  con-­‐
sensus	
  tree	
  built	
  using	
  all	
  replicates	
  is	
  opNmized	
  (when	
  perfomring	
  single	
  searches,	
  i.e.	
  one	
  single	
  replicate,	
  no	
  
consensus	
  is	
  built	
  and	
  no	
  intra-­‐step	
  opNmizaNon	
  of	
  target	
  parameters	
  is	
  performed).	
  With	
  STOCH(p),	
  with	
  p	
  
between	
  [0.01,	
  1],	
  there	
  is	
  a	
  probability	
  p	
  at	
  each	
  step	
  to	
  opNmize	
  the	
  tree.	
  With	
  DISC(s),	
  trees	
  will	
  be	
  opN-­‐
mized	
  every	
  s	
  steps.	
  Note	
  that	
  (1)	
  with	
  STOCH	
  and	
  DISC,	
  opNmizaNon	
  of	
  the	
  final	
  trees	
  is	
  also	
  performed	
  at	
  the	
  
end	
  of	
  the	
  heurisNc	
  (hence,	
  at	
  the	
  end	
  of	
  each	
  replicate	
  if	
  mulNple	
  replicates	
  are	
  performed)	
  and	
  (2)	
  with	
  END-
SEARCH,	
  STOCH	
  and	
  DISC,	
  the	
  final	
  consensus	
  tree	
  is	
  also	
  opNmized	
  when	
  mulNple	
  replicates	
  are	
  
performed.You	
  can	
  also	
  set	
  :
• ALGO –	
  Set	
  the	
  algorithm	
  used	
  for	
  intra-­‐step	
  opNmizaNon.

§ GA – GeneNc	
  algorithm.	
  Simple	
  GA	
  without	
  recombinaNon:	
  each	
  tree	
  to	
  be	
  opNmized	
  is	
  copied	
  7	
  
Nmes	
  and	
  that	
  populaNon	
  of	
  8	
  individuals	
  is	
  experiencing	
  mutaNons	
  (of	
  targets,	
  see	
  below).	
  Selec-­‐
Non	
  is	
  performed	
  with	
  IMPROVE (see	
  above).	
  The	
  GA	
  is	
  stopped	
  when	
  the	
  likelihood	
  remains	
  un-­‐
changed	
  for	
  200	
  steps	
  (generaNons).

§ POWELL – NOT AVAILABLE YET - DirecNon	
  set	
  (Powell’s)	
  method	
  in	
  mulNdimensions,	
  using	
  golden	
  
secNon	
  search	
  to	
  bracket	
  a	
  minimum	
  of	
  the	
  likelihood	
  funcNon,	
  and	
  Brent’s	
  method	
  to	
  isolate	
  the	
  
minimum.

§ DFO – NOT AVAILABLE YET - DerivaNve-­‐Free	
  OpNmizaNon.	
  The	
  method	
  used	
  is	
  a	
  trust-­‐region	
  
algorithm	
  that	
  employs	
  interpolaNon	
  models	
  of	
  degree	
  at	
  most	
  2	
  to	
  build	
  a	
  model	
  of	
  the	
  objecNve	
  
funcNon.	
  The	
  models	
  are	
  constructed	
  using	
  Newton	
  fundamental	
  polynomials.

• TARGET –	
  Set	
  the	
  targets	
  of	
  the	
  opNmizaNon	
  procedure.	
  
§ BL – Branch	
  lengths.
§ R – Parameter(s)	
  of	
  the	
  rate	
  matrix	
  R	
  (not	
  relevant	
  with	
  Jukes	
  Cantor	
  model).
§ GAMMA – Shape	
  parameter	
  alpha	
  of	
  the	
  gamma	
  distribuNon	
  (only	
  relevant	
  when	
  rate	
  heterogeneity	
  

is	
  used).
§ PINV – ProporNon	
  of	
  invariable	
  sites	
  (only	
  relevant	
  when	
  invariant	
  sites	
  are	
  used).
§ APRATE – Among-­‐ParNNon	
  rate	
  variaNon	
  (relaNve	
  branch	
  lengths	
  are	
  only	
  relevant	
  when	
  the	
  data-­‐

set	
  is	
  parNNoned	
  into	
  charsets).
5. STARTINGTREE –	
  Method	
  used	
  to	
  generate	
  the	
  starNng	
  tree(s)	
  for	
  the	
  heurisNc.	
  When	
  using	
  starNng	
  trees	
  gen-­‐

erated	
  by	
  NK	
  or	
  LNJ	
  (see	
  below),	
  a	
  model	
  (and	
  potenNally	
  rate	
  heterogeneity	
  distribuNon	
  and	
  proporNon	
  of	
  in-­‐
variable	
  sites)	
  must	
  also	
  be	
  set	
  for	
  compuNng	
  the	
  distance	
  matrix.
• GENERATION –	
  By	
  default,	
  MetaPIGA	
  uses	
  Loose	
  Neighbor	
  Joining	
  Trees	
  (LNJ)	
  as	
  starNng	
  trees.

§ NJ –	
  StarNng	
  trees	
  are	
  built	
  using	
  the	
  Neighbor	
  Joining	
  method	
  (Saitou	
  &	
  Nei	
  1987).
§ LNJ(range) –	
  Loose	
  Neighbor	
  Joining.	
  Range	
  is	
  a	
  percentage	
  value,	
  that	
  must	
  be	
  greater	
  than	
  0	
  

and	
  smaller	
  than	
  1.	
  StarNng	
  trees	
  have	
  pseudo-­‐random	
  topologies	
  based	
  on	
  the	
  Neighbor	
  Joining	
  
algorithm.	
  The	
  classical	
  NJ	
  method	
  joins	
  2	
  nodes	
  having	
  minimal	
  rate-­‐corrected	
  distance.	
  Here,	
  un-­‐
der	
  LNJ,	
  a	
  list	
  containing	
  the	
  (range x (NTax x NTax-1)/2) smaller	
  distances	
  will	
  be	
  built	
  
and	
  two	
  nodes	
  will	
  be	
  randomly	
  selected	
  from	
  it.Branch	
  lengths	
  are	
  computed	
  normally	
  using	
  the	
  
Neighbor	
  Joining	
  method	
  (Saitou	
  &	
  Nei	
  1987).If	
  the	
  range parameter	
  is	
  close	
  to	
  0,	
  the	
  LNJ	
  tree	
  will	
  
be	
  similar	
  to	
  the	
  neighbor	
  joining	
  tree;	
  if	
  it’s	
  close	
  to	
  1,	
  the	
  tree	
  will	
  exhibit	
  essenNally	
  a	
  random	
  to-­‐
pology.
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§ RANDOM –	
  StarNng	
  trees	
  have	
  random	
  topologies	
  and	
  random	
  branch	
  lengths.	
  No	
  distance	
  matrix	
  is	
  
used,	
  so	
  you	
  can’t	
  choose	
  a	
  subsNtuNon	
  model	
  or	
  rate	
  distribuNon	
  or	
  proporNon	
  of	
  invariable	
  sites.	
  
The	
  random	
  topology	
  is	
  generated	
  by	
  starNng	
  with	
  a	
  “root”	
  node	
  with	
  three	
  branches	
  ending	
  each	
  
with	
  an	
  ‘open	
  slot’.	
  We	
  know	
  the	
  list	
  of	
  available	
  T	
  taxa	
  and	
  we	
  know	
  that	
  the	
  number	
  of	
  internal	
  
nodes	
  in	
  the	
  final	
  tree	
  will	
  be	
  (T-­‐2-­‐root).	
  The	
  tree	
  generator	
  cycles	
  through	
  the	
  list	
  of	
  open	
  slots.	
  
Each	
  Nme	
  an	
  open	
  slot	
  is	
  visited,	
  there	
  is	
  a	
  probability	
  p=0.5	
  to	
  fill	
  the	
  slot	
  either	
  with	
  one	
  of	
  the	
  
available	
  taxa	
  or	
  with	
  one	
  of	
  the	
  available	
  internal	
  nodes	
  (connected	
  to	
  two	
  new	
  branches,	
  each	
  
ending	
  with	
  an	
  open	
  slot).	
  An	
  internal	
  node	
  is	
  always	
  added	
  if	
  only	
  one	
  open	
  slot	
  remains.	
  The	
  algo-­‐
rithm	
  stops	
  when	
  all	
  internal	
  nodes	
  and	
  taxa	
  have	
  been	
  incorporated.	
  	
  Branch	
  lengths	
  are	
  drawn	
  
from	
  an	
  exponenNal	
  distribuNon	
  (with	
  λ=1),	
  and	
  shiked	
  by	
  0.001	
  (such	
  that	
  the	
  minimum	
  value	
  is	
  
0.001	
  and	
  the	
  mean	
  is	
  1.001).

§ GIVEN –	
  User	
  tree(s).	
  If	
  your	
  NEXUS	
  file	
  contains	
  a	
  TREE	
  block	
  (and	
  the	
  command	
  GIVEN	
  is	
  used),	
  and	
  
if	
  you	
  selected	
  SA	
  or	
  HC	
  as	
  the	
  heurisNc	
  opNon,	
  the	
  first	
  tree	
  in	
  the	
  tree	
  block	
  will	
  be	
  loaded	
  and	
  
used	
  as	
  starNng	
  tree.	
  If	
  you	
  selected	
  CP	
  as	
  the	
  heurisNc	
  opNon	
  with	
  NPOP	
  populaNons,	
  the	
  NPOP	
  first	
  
trees	
  in	
  the	
  TREE	
  block	
  will	
  be	
  loaded	
  (one	
  tree	
  per	
  populaNon).	
  If	
  you	
  selected	
  GA	
  as	
  the	
  heurisNc	
  
opNon,	
  the	
  NIND	
  first	
  trees	
  in	
  the	
  TREE	
  block	
  will	
  be	
  loaded	
  (one	
  tree	
  per	
  individual).	
  More	
  opNons	
  
for	
  imporNng	
  user	
  starNng	
  trees	
  are	
  available	
  in	
  the	
  GUI	
  (see	
  point	
  5.3.4.	
  in	
  the	
  manual	
  above).

• MODEL –	
  Depending	
  on	
  the	
  datatype	
  (DNA	
  or	
  PROTEIN	
  or	
  STANDARD),	
  the	
  default	
  subsNtuNon	
  model	
  to	
  
generate	
  distance	
  matrices	
  is	
  JC,	
  POISSON,	
  or	
  GTR2,	
  respecNvely.	
  You	
  can	
  set	
  subsNtuNon	
  models	
  with	
  :

§ GTR – General-­‐Time-­‐Reversible	
  model	
  for	
  nucleoNdes.
§ HKY85 – Hasegewa-­‐Kishimo-­‐Yano	
  1985	
  model	
  (nucleoNdes).
§ TN93 – Tamura-­‐Nei	
  1993	
  model	
  (nucleoNdes).
§ K2P – Kimura's	
  2	
  Parameter	
  model	
  (nucleoNdes).
§ JC – Jukes	
  Cantor	
  1969	
  model	
  (nucleoNdes).
§ GTR20 –	
  General-­‐Time-­‐Reversible	
  model	
  for	
  proteins.
§ POISSON –	
  Poisson	
  model	
  (proteins).
§ GTR2 –	
  General-­‐Time-­‐Reversible	
  model	
  for	
  standard	
  binary	
  data.
§ NONE - No	
  distance	
  matrix.	
  

• DISTRIBUTION –	
  The	
  rate	
  heterogeneity	
  (none	
  by	
  default)	
  
§ NONE –	
  No	
  rate	
  heterogeneity.
§ GAMMA –	
  Rate	
  heterogeneity	
  following	
  a	
  Gamma	
  distribuNon.	
  The	
  number	
  of	
  rate	
  categories	
  is	
  fixed	
  

to	
  4	
  but	
  the	
  shape	
  parameter	
  alpha	
  (default=0.5)	
  can	
  be	
  defined.
• PINV –	
  ProporNon	
  of	
  invariable	
  sites	
  (between	
  0	
  and	
  1).	
  Set	
  to	
  0	
  (no	
  invariant)	
  by	
  default.	
  If	
  PINV	
  >	
  0,	
  the	
  

total	
  number	
  of	
  sites	
  is	
  adjusted	
  to	
  have	
  distances	
  equal	
  to	
  the	
  mean	
  number	
  of	
  subsNtuNons	
  over	
  variable	
  
sites	
  only.

• PI –	
  Base	
  composiNon	
  of	
  invariant	
  sites	
  (used	
  only	
  if	
  PINV	
  >	
  0).
§ EQUAL –	
  The	
  invariant	
  sites	
  will	
  have	
  base	
  composiNon	
  equal	
  to	
  0.25.
§ ESTIMATED –	
  The	
  invariant	
  sites	
  base	
  composiNon	
  is	
  set	
  to	
  the	
  average	
  base	
  composiNon	
  across	
  all	
  

sequences.
§ CONSTANT –	
  (Default)	
  The	
  invariant	
  sites	
  base	
  composiNon	
  is	
  set	
  to	
  the	
  average	
  base	
  composiNon	
  of	
  

the	
  site	
  which	
  are	
  constant.
6. OPERATORS	
  –	
  Sets	
  the	
  operators	
  used	
  to	
  generate	
  new	
  soluNon	
  trees.	
  You	
  can	
  list	
  more	
  than	
  one	
  operator,	
  and	
  

some	
  can	
  have	
  specific	
  parameters.	
  
• SELECTION This	
  keyword	
  can	
  be	
  set	
  to:	
  

§ ORDERED -	
  Selected	
  operators	
  are	
  chosen	
  one	
  aker	
  another.	
  
§ RANDOM - (Default)	
  Selected	
  operators	
  are	
  randomly	
  drawn.	
  
§ FREQLIST - Selected	
  operators	
  are	
  drawn	
  following	
  probabiliNes	
  defined	
  in	
  FREQUENCIES.	
  

• If	
  OPERATORS	
  parameter	
  is	
  not	
  set,	
  MetaPIGA	
  uses	
  the	
  following	
  operators	
  by	
  default:	
  NNI,	
  BLMINT, 
TXS(2), STS(2).	
  	
  Available	
  operators	
  are:

§ NNI (NEAREST-NEIGHBOR INTERCHANGE) - Two	
  grand-­‐children	
  branches	
  of	
  a	
  random	
  internal	
  
node	
  are	
  swapped.

§ SPR (SUBTREE PRUNING AND REGRAFTING) – Removes	
  a	
  branch	
  from	
  the	
  tree	
  with	
  a	
  subtree	
  at-­‐
tached	
  to	
  it	
  and	
  re-­‐graks	
  the	
  subtree	
  elsewhere.

§ TBR (TREE-BISECTION-RECONNECTION)	
  – Breaks	
  a	
  branch	
  and	
  reconnects	
  each	
  of	
  the	
  two	
  sub-­‐
trees	
  on	
  a	
  random	
  branch.	
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§ TXS (TAXA SWAP) - Swaps	
  a	
  given	
  number	
  of	
  randomly-­‐chosen	
  leaves	
  (defined	
  between	
  paren-­‐
theses).	
  The	
  value	
  for	
  this	
  operator	
  is	
  a	
  number	
  between	
  2	
  and	
  the	
  number	
  of	
  leaves.	
  You	
  can	
  also	
  
set	
  the	
  parameter	
  to	
  ALL	
  (swap	
  all	
  leaves)	
  or	
  RANDOM	
  (swap	
  a	
  random	
  number	
  of	
  leaves).	
  If	
  you	
  set	
  a	
  
number	
  smaller	
  than	
  2,	
  2	
  leaves	
  will	
  be	
  permuted.	
  If	
  you	
  set	
  a	
  number	
  greater	
  than	
  the	
  number	
  of	
  
leaves,	
  ALL	
  leaves	
  will	
  be	
  permuted.	
  Default	
  parameter	
  is	
  2.

§ STS (SUBTREE SWAP) – By	
  default,	
  swaps	
  two	
  randomly-­‐chosen	
  internal	
  nodes	
  (i.e.,	
  subtrees	
  
that	
  contain	
  more	
  than	
  one	
  leaf).	
  If	
  the	
  parameter	
  is	
  set	
  to	
  RANDOM	
  instead	
  of	
  2,	
  the	
  whole	
  tree	
  will	
  
be	
  divided	
  into	
  a	
  random	
  number	
  of	
  subtrees,	
  and	
  all	
  of	
  them	
  will	
  be	
  permuted.

§ BLM (BRANCH LENGTH MUTATION) – Randomly	
  changes	
  the	
  length	
  of	
  a	
  randomly-­‐chosen	
  branch	
  
by	
  mulNplying	
  the	
  parameter’s	
  value	
  of	
  the	
  previous	
  generaNon	
  by	
  a	
  random	
  number	
  drawn	
  from	
  an	
  
exponenNal	
  distribuNon	
  (with	
  λ=2),	
  and	
  shiked	
  by	
  0.5	
  (such	
  that	
  the	
  minimum	
  value	
  is	
  0.5	
  and	
  the	
  
mean	
  is	
  1).

§ BLMINT (BRANCH LENGTH MUTATION ONLY ON INTERNAL BRANCHES) – Randomly	
  changes	
  the	
  
length	
  or	
  a	
  randomly-­‐chosen	
  internal	
  branch	
  by	
  mulNplying	
  the	
  parameter’s	
  value	
  of	
  the	
  previous	
  
generaNon	
  by	
  a	
  random	
  number	
  drawn	
  from	
  an	
  exponenNal	
  distribuNon	
  (with	
  λ=2),	
  and	
  shiked	
  by	
  
0.5	
  (such	
  that	
  the	
  minimum	
  value	
  is	
  0.5	
  and	
  the	
  mean	
  is	
  1).

§ RPM (RATE PARAMETERS MUTATION) –	
  Randomly	
  changes	
  the	
  R	
  matrix	
  values	
  by	
  mulNplying	
  the	
  
value	
  of	
  the	
  previous	
  generaNon	
  by	
  a	
  random	
  number	
  drawn	
  from	
  an	
  exponenNal	
  distribuNon	
  (with	
  
λ=2),	
  and	
  shiked	
  by	
  0.5	
  (such	
  that	
  the	
  minimum	
  value	
  is	
  0.5	
  and	
  the	
  mean	
  is	
  1).	
  Parameter	
  for	
  this	
  
operator	
  is	
  the	
  number	
  of	
  R	
  elements	
  to	
  change	
  (1	
  or	
  ALL).	
  

§ GDM (GAMMA DISTRIBUTION MUTATION) –	
  Randomly	
  changes	
  the	
  alpha	
  parameter	
  of	
  the	
  Gamma	
  
distribuNon	
  by	
  mulNplying	
  the	
  parameter’s	
  value	
  of	
  the	
  previous	
  generaNon	
  by	
  a	
  random	
  number	
  
drawn	
  from	
  an	
  exponenNal	
  distribuNon	
  (with	
  λ=2),	
  and	
  shiked	
  by	
  0.5	
  (such	
  that	
  the	
  minimum	
  value	
  
is	
  0.5	
  and	
  the	
  mean	
  is	
  1).	
  Only	
  available	
  when	
  gamma-­‐distribuNon	
  rate	
  heterogeneity	
  has	
  been	
  se-­‐
lected.

§ PIM (PROPORTION OF INVARIANT MUTATION) –	
  Randomly	
  changes	
  the	
  proporNon	
  of	
  invariables	
  
sites	
  by	
  mulNplying	
  the	
  parameter’s	
  value	
  of	
  the	
  previous	
  generaNon	
  by	
  a	
  random	
  number	
  drawn	
  
from	
  a	
  normal	
  distribuNon	
  (with	
  mean=1	
  and	
  SD=	
  0.5).	
  The	
  resulNng	
  mulNplier	
  is	
  rejected	
  if	
  ≤	
  
0.4.Only	
  available	
  when	
  proporNon	
  of	
  invariable	
  sites	
  has	
  been	
  selected.

§ APRM (AMONG-PARTITION RATE MUTATION) –	
  Randomly	
  changes	
  the	
  among-­‐parNNon	
  rates	
  for	
  
relaNve	
  branch	
  lengths	
  by	
  mulNplying	
  the	
  parameter’s	
  value	
  of	
  the	
  previous	
  generaNon	
  by	
  a	
  random	
  
number	
  drawn	
  from	
  a	
  normal	
  distribuNon	
  (with	
  mean=1	
  and	
  SD=	
  0.5).	
  The	
  resulNng	
  mulNplier	
  is	
  re-­‐
jected	
  if	
  ≤	
  0.4.Only	
  available	
  when	
  the	
  dataset	
  is	
  parNNoned	
  with	
  “charsets”.

7. FREQUENCIES - Used	
  to	
  set	
  the	
  frequencies	
  of	
  operators,	
  using	
  operator(frequency).
8. DYNAMICFREQ – Operators	
  set	
  to	
  dynamic	
  have	
  their	
  probabiliNes	
  of	
  use	
  automaNcally	
  adjusted	
  at	
  every	
  'inter-­‐

val'	
  to	
  reflect	
  their	
  relaNve	
  contribuNons	
  to	
  score	
  improvements	
  (the	
  probability	
  of	
  using	
  a	
  specific	
  operator	
  is	
  
increased	
  or	
  decreased,	
  if	
  its	
  contribuNon	
  to	
  the	
  score	
  improvement	
  is	
  increased	
  or	
  decreased,	
  respecNvely).You	
  
can	
  set	
  some	
  parameters	
  for	
  dynamic	
  frequencies:
• DYNOPERATORS	
  –	
  The	
  list	
  of	
  operators	
  is	
  set	
  to	
  dynamic.
• DINT –	
  Interval	
  (in	
  number	
  of	
  steps)	
  used	
  to	
  recompute	
  the	
  frequencies.	
  Set	
  to	
  100	
  by	
  default.
• DMIN –	
  Frequencies	
  can't	
  be	
  decreased	
  under	
  the	
  lower	
  bond	
  .	
  Set	
  to	
  0.04	
  by	
  default.

9. SETTINGS	
  –	
  Some	
  miscellaneous	
  MetaPIGA	
  seMngs	
  
• REMOVECOL – Set	
  to	
  NONE by	
  default,	
  treaNng	
  gaps	
  ('-­‐')	
  as	
  N	
  (A	
  or	
  C	
  or	
  T	
  or	
  G)	
  in	
  nucleoNde	
  datasets,	
  or	
  as	
  

X	
  (any	
  amino	
  acid)	
  in	
  protein	
  datasets,	
  or	
  as	
  ?	
  (0	
  or	
  1)	
  in	
  standard	
  datasets.	
  	
  Can	
  be	
  set	
  either	
  to	
  GAP, for	
  
removing	
  every	
  column	
  containing	
  a	
  gap	
  ('-­‐'),	
  or	
  to	
  NGAP	
  	
  for	
  removing	
  every	
  column	
  containing	
  a	
  gap	
  or	
  a	
  
N/X/?	
  in	
  nucletoNde/protein/standard	
  datasets.

• DIR –	
  Defines	
  the	
  whole	
  path	
  where	
  the	
  Results	
  folder	
  will	
  be	
  placed.	
  By	
  default,	
  results	
  folders	
  are	
  put	
  in	
  a	
  
‘MetaPIGA	
  results’	
  folder	
  in	
  your	
  home	
  directory	
  (e.g.	
  ‘My	
  documents’	
  in	
  Windows).	
  If	
  you	
  use	
  the	
  DIR 
command	
  in	
  a	
  Nexus	
  file,	
  you	
  MUST	
  put	
  the	
  folder	
  name	
  between	
  quotes.

• LABEL –	
  Defines	
  the	
  name	
  of	
  the	
  Results	
  folder	
  for	
  output	
  files.	
  Changing	
  the	
  label	
  changes	
  the	
  Results	
  
folder	
  name	
  but	
  not	
  the	
  nexus	
  file	
  name.	
  The	
  Results	
  folder	
  will	
  be	
  placed	
  into	
  the	
  directory	
  defined	
  with	
  
the	
  DIR	
  command.	
  The	
  Result	
  folder	
  is	
  named	
  with	
  its	
  label	
  followed	
  by	
  the	
  date	
  (year-­‐month-­‐day)	
  and	
  
followed	
  by	
  the	
  Nme	
  (hour_min_sec)	
  at	
  the	
  which	
  the	
  search	
  was	
  started.	
  This	
  allows	
  for	
  easy	
  differenNa-­‐
Non	
  of	
  results	
  performed	
  at	
  different	
  Nmes	
  on	
  the	
  same	
  dataset.	
  If	
  you	
  use	
  the	
  LABEL command	
  in	
  a	
  Nexus	
  
file,	
  you	
  MUST	
  put	
  the	
  label	
  name	
  between	
  quotes.
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• GRID – NOT AVAILABLE YET - MetaPIGA	
  will	
  run	
  through	
  a	
  GRID	
  using	
  the	
  XtremWeb-­‐CH	
  middleware	
  
(see	
  hTp://www.xtremwebch.net/).	
  You	
  must	
  specify	
  the	
  server	
  address	
  (e.g.	
  
SERVER=HTTP://ADDRESS:8080),	
  your	
  idenNfier	
  on	
  the	
  GRID	
  (CLIENT	
  command)	
  and	
  the	
  idenNfier	
  of	
  the	
  
MetaPIGA	
  module	
  on	
  the	
  GRID	
  (MODULE	
  command).	
  Note	
  that	
  when	
  MetaPIGA	
  runs	
  on	
  a	
  GRID,	
  it	
  does	
  not	
  
generate	
  any	
  log	
  file	
  (LOG command	
  is	
  ignored).	
  GRID	
  running	
  is	
  disabled	
  by	
  default.

10. OUTGROUP –	
  Sets	
  any	
  number	
  of	
  taxa	
  that	
  will	
  form	
  the	
  outgroup	
  (all	
  other	
  taxa	
  are	
  in	
  the	
  ingroup).	
  Operators	
  
will	
  never	
  mix	
  up	
  taxa	
  between	
  the	
  outgroup	
  and	
  the	
  ingroup.	
  The	
  tree	
  is	
  rooted	
  between	
  outgroup	
  and	
  ingroup.

11. DELETE 	
  –	
  Sets	
  any	
  number	
  of	
  taxa	
  that	
  will	
  be	
  removed	
  from	
  the	
  analysis.
12. CHARSET – Defines	
  a	
  charset	
  ;	
  you	
  must	
  use	
  a	
  different	
  CHARSET command	
  for	
  each	
  charset	
  to	
  be	
  defined.	
  For	
  

each	
  one,	
  you	
  must	
  give	
  its	
  NAME and	
  a	
  list	
  of	
  character	
  posiNons	
  with	
  SET.	
  For	
  defining	
  a	
  range	
  of	
  character	
  po-­‐
siNons,	
  you	
  can	
  use	
  2	
  posiNons	
  separated	
  by	
  ‘-‘	
  (like	
  60-125),	
  and	
  potenNally	
  add	
  ‘/’	
  and	
  the	
  interval	
  size.	
  For	
  
example	
  60-125/3	
  will	
  take	
  posiNons	
  60, 63, 66, 69, 72, …, 120, 123.	
  	
  Charsets	
  can	
  be	
  defined	
  as	
  
the	
  combinaNon	
  of	
  other	
  charsets	
  (defined	
  higher	
  in	
  the	
  METAPIGA	
  block)	
  or	
  by	
  the	
  combinaNon	
  of	
  charset(s)	
  
and	
  	
  character	
  list.

13. EXCLUDE 	
  –	
  Sets	
  any	
  number	
  of	
  charsets	
  that	
  will	
  be	
  excluded	
  from	
  the	
  analysis.	
  A	
  charset	
  is	
  defined	
  by	
  2	
  charac-­‐
ter	
  posiNons	
  (like	
  60-125),	
  or	
  can	
  be	
  defined	
  with	
  the	
  CHARSET	
  command.

14. PARTITION 	
  –	
  Divides	
  the	
  data	
  matrix	
  in	
  charsets	
  and	
  compute	
  likelihood	
  separately	
  for	
  each	
  charset.	
  A	
  charset	
  
is	
  defined	
  by	
  2	
  character	
  posiNons	
  (like	
  60-125),	
  or	
  can	
  be	
  defined	
  with	
  the	
  CHARSET	
  command.

15. STOPAFTER 	
  –	
  Sets	
  the	
  stop	
  criterion	
  of	
  the	
  heurisNc.	
  Any	
  number	
  of	
  condiNons	
  can	
  be	
  set	
  and	
  each	
  one	
  can	
  be	
  
necessary	
  or	
  sufficient.	
  The	
  heurisNc	
  stops	
  when	
  any	
  of	
  the	
  sufficient	
  condiNons	
  is	
  met	
  or	
  when	
  all	
  necessary	
  
condiNons	
  are	
  met.	
  CondiNons	
  are	
  sufficient	
  by	
  default	
  and	
  can	
  be	
  switch	
  to	
  necessary	
  using	
  the	
  NECESSARY	
  
command.	
  If	
  STOP AFTER	
  is	
  not	
  set,	
  the	
  heurisNc	
  will	
  not	
  start	
  but	
  starNng	
  tree(s)	
  will	
  be	
  generated.
• STEPS - Defines	
  a	
  maximum	
  number	
  of	
  generaNons.
• TIME – 	
  Allows	
  to	
  stop	
  the	
  heurisNc	
  aker	
  a	
  given	
  amount	
  of	
  Nme	
  (in	
  hours).
• AUTO – AUTO	
  will	
  stop	
  the	
  heurisNc	
  if	
  the	
  best	
  soluNon	
  evaluaNon	
  doesn’t	
  improve	
  more	
  than	
  a	
  given	
  per-­‐

centage	
  (AUTOTHRESHOLD	
  parameter,	
  set	
  to	
  0.0001	
  by	
  default,	
  i.e.	
  0.01%)	
  at	
  any	
  step	
  during	
  the	
  defined	
  
number	
  of	
  steps.

• CONSENSUS – CONSENSUS	
  can	
  only	
  be	
  used	
  with	
  Consensus	
  Pruning	
  (metaGA	
  heurisNc),	
  and	
  will	
  stop	
  the	
  
heurisNc	
  when	
  the	
  mean	
  relaNve	
  error	
  among	
  consensus	
  trees	
  (INTERVAL	
  parameter,	
  set	
  to	
  10	
  by	
  default)	
  
remains	
  below	
  a	
  given	
  value	
  (set	
  with	
  MRE	
  parameter,	
  0.03	
  by	
  default).	
  Each	
  consensus	
  tree	
  is	
  built	
  using	
  all	
  
trees	
  from	
  all	
  populaNons	
  in	
  a	
  generaNon.	
  As	
  consensus	
  trees	
  tend	
  not	
  to	
  vary	
  much	
  between	
  2	
  consecuNve	
  
generaNons,	
  the	
  user	
  is	
  advised	
  to	
  allow	
  several	
  generaNons	
  between	
  sampling	
  (with	
  GENERATION	
  parame-­‐
ter,	
  set	
  to	
  5	
  by	
  default).

• NECESSARY – The	
  following	
  condiNons	
  can	
  be	
  switched	
  to	
  necessary	
  :	
  STEPS,	
  TIME,	
  AUTO,	
  CONSENSUS.
16. REPLICATES	
  –	
  The	
  number	
  of	
  Nmes	
  the	
  metaheurisNc	
  will	
  be	
  repeated	
  with	
  the	
  same	
  dataset.	
  At	
  the	
  end,	
  a	
  

majority-­‐rule	
  consensus	
  tree	
  is	
  produced.	
  By	
  default,	
  only	
  one	
  tree	
  is	
  produced.
• AUTOSTOP – Adds	
  a	
  stop	
  condiNon	
  to	
  replicates’	
  generaNon.	
  

§ NONE - By	
  default,	
  there	
  is	
  no	
  stop	
  condiNon,	
  so	
  a	
  given	
  number	
  of	
  replicates	
  is	
  produced.	
  You	
  can	
  
set	
  the	
  number	
  of	
  replicates	
  produced	
  with	
  RNUM	
  parameter.

§ MRE(error) – This	
  opNon	
  allows	
  MetaPIGA	
  to	
  stop	
  producing	
  replicates	
  when	
  the	
  Mean	
  RelaNve	
  
Error	
  among	
  consecuNve	
  consensus	
  trees	
  remains	
  below	
  a	
  given	
  value.	
  Error	
  is	
  a	
  value	
  between	
  
[0,1]	
  set	
  to	
  0.05	
  by	
  default.	
  
o RMIN – The	
  minimum	
  number	
  of	
  replicates	
  to	
  produce.	
  Default	
  value	
  is	
  100.
o RMAX – The	
  maximum	
  number	
  of	
  replicates	
  to	
  produce.	
  Default	
  value	
  is	
  10	
  000.
o INTERVAL – The	
  number	
  of	
  consecuNve	
  consensus	
  trees	
  (set	
  to	
  10	
  by	
  default)	
  that	
  must	
  

have	
  a	
  MRE	
  below	
  a	
  given	
  value	
  before	
  stopping	
  the	
  producNon	
  of	
  replicates	
  .
• PARALLEL – The	
  number	
  of	
  replicates	
  to	
  be	
  run	
  in	
  parallel	
  (i.e.,	
  simultaneously).	
  By	
  default,	
  this	
  parameter	
  

is	
  set	
  to	
  1	
  (no	
  parallel	
  processing).	
  	
  WARNING:	
  It	
  is	
  strongly	
  advised	
  not	
  to	
  use	
  a	
  value	
  greater	
  than	
  the	
  
number	
  of	
  processors/cores	
  available	
  on	
  the	
  running	
  computer.	
  WARNING2:	
  this	
  parameter	
  must	
  be	
  con-­‐
sidered	
  in	
  combinaNon	
  with	
  the	
  parameter	
  NCORE	
  (i.e.,	
  the	
  number	
  of	
  cores/processors	
  assigned	
  for	
  paral-­‐
lel	
  processing	
  WITHIN	
  a	
  replicate).	
  For	
  example,	
  if	
  you	
  use	
  a	
  computer	
  with	
  4	
  cores,	
  set	
  the	
  NCORE	
  parame-­‐
ter	
  to	
  1	
  and	
  the	
  PARALLEL	
  parameter	
  to	
  4,	
  such	
  that	
  each	
  replicate	
  will	
  use	
  a	
  single	
  core	
  (i.e.,	
  4	
  replicates	
  
will	
  be	
  run	
  simultaneously).	
  If	
  you	
  use	
  a	
  computer	
  with	
  8	
  cores,	
  you	
  can	
  set	
  the	
  NCORE	
  parameter	
  to	
  2	
  and	
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the	
  PARALLEL	
  parameter	
  to	
  4,	
  such	
  that	
  each	
  replicate	
  will	
  use	
  two	
  cores	
  AND	
  4	
  replicates	
  will	
  be	
  run	
  simul-­‐
taneously.

17. LOG	
  –	
  Set	
  the	
  log	
  files	
  you	
  want	
  as	
  output.	
  They	
  can	
  give	
  you	
  valuable	
  informaNon	
  on	
  what	
  happens	
  during	
  the	
  
execuNon	
  of	
  MetaPIGA.	
  Be	
  aware	
  that	
  selecNng	
  the	
  log	
  files	
  indicated	
  with	
  asterisks	
  can	
  (i)	
  significantly	
  slow	
  
down	
  the	
  search	
  and	
  (ii)	
  fill	
  up	
  large	
  amount	
  of	
  disk	
  space	
  (with	
  the	
  magnitude	
  of	
  slow-­‐down	
  /	
  fill-­‐up	
  approxi-­‐
mately	
  indicated	
  by	
  the	
  number	
  of	
  asterisks).	
  	
  All	
  log	
  files	
  are	
  wriTen	
  in	
  the	
  results	
  folder.	
  
• DATA - Working	
  matrix	
  log	
  file	
  -­‐	
  Prints	
  the	
  compressed	
  dataset	
  to	
  'Dataset.log'.	
  The	
  last	
  row	
  contains	
  the	
  

weight	
  of	
  each	
  column,	
  i.e.,	
  the	
  number	
  of	
  Nmes	
  this	
  data	
  paTern	
  is	
  found	
  in	
  the	
  data	
  matrix.	
  .
• DIST – Distance	
  matrix	
  log	
  file	
  -­‐	
  Prints	
  the	
  distance	
  matrix	
  to	
  'Distances.log'.
• TREESTART – StarNng	
  Trees	
  log	
  file	
  -­‐	
  Prints	
  the	
  starNng	
  tree(s)	
  to	
  'StarUngTrees.tre'.
• HEUR (*) – HeurisNc	
  search	
  log	
  file	
  -­‐	
  The	
  'HeurisUc.log'	
  file	
  records	
  details	
  about	
  each	
  step	
  of	
  the	
  heuris-­‐

Nc	
  used.	
  It	
  requires	
  disk	
  space	
  between	
  500	
  bytes	
  and	
  1	
  Kb	
  per	
  iteraNon	
  of	
  the	
  heurisNc.
• TREEHEUR (**) – HeurisNc	
  search	
  tree	
  file	
  -­‐	
  'The	
  'HeurisUc.tre'	
  file	
  records	
  each	
  tree	
  found	
  at	
  each	
  step	
  

of	
  the	
  heurisNc.	
  It	
  requires	
  disk	
  space	
  of	
  +/-­‐	
  130	
  bytes	
  per	
  taxa	
  per	
  tree	
  recorded.	
  For	
  example,	
  recording	
  
trees	
  for	
  a	
  dataset	
  of	
  200	
  taxa,	
  using	
  the	
  metaGA	
  heurisNc	
  with	
  4	
  populaNons	
  of	
  4	
  individuals	
  each,	
  for	
  a	
  
fixed	
  amount	
  of	
  5000	
  generaNons	
  will	
  generate	
  a	
  file	
  of	
  about	
  1.5Gb	
  for	
  each	
  replicate	
  produced.

• CONSENSUS (**) –Consensus	
  log	
  file	
  -­‐	
  The	
  ‘Consensus.log'	
  file	
  records	
  consensus	
  at	
  each	
  step	
  of	
  Consen-­‐
sus	
  Pruning.	
  It	
  requires	
  disk	
  space	
  between	
  100	
  bytes	
  and	
  1Kb	
  per	
  taxa	
  and	
  per	
  consensus	
  recorded.	
  For	
  
example,	
  recording	
  consensus	
  for	
  a	
  dataset	
  of	
  200	
  taxa,	
  using	
  the	
  metaGA	
  heurisNc	
  for	
  a	
  fixed	
  number	
  of	
  
5000	
  generaNons	
  will	
  generate	
  a	
  file	
  between	
  100Mb	
  and	
  1Gb	
  for	
  each	
  replicate	
  produced..

• OPDETAILS (***) - Operators	
  log	
  file	
  -­‐	
  The	
  'OperatorsDetails.log'	
  file	
  records	
  details	
  about	
  the	
  opera-­‐
tors	
  used.	
  It	
  requires	
  disk	
  space	
  of	
  200-­‐300	
  bytes	
  per	
  taxa	
  per	
  operaNon.	
  For	
  example,	
  recording	
  operator	
  
details	
  for	
  a	
  dataset	
  of	
  200	
  taxa,	
  using	
  the	
  metaGA	
  heurisNc	
  with	
  4	
  populaNons	
  of	
  4	
  individuals	
  each,	
  for	
  a	
  
fixed	
  number	
  of	
  5000	
  generaNons	
  will	
  generate	
  a	
  file	
  between	
  1.7Gb	
  and	
  3.4Gb	
  for	
  each	
  replicate	
  pro-­‐
duced.

• OPSTATS –	
  Operator	
  staNsNcs	
  file	
  –	
  The	
  ‘OperatorsStaNsNcs.log’	
  file	
  records	
  operator	
  staNsNcs	
  at	
  the	
  end	
  
of	
  a	
  search,	
  as	
  well	
  as	
  each	
  Nme	
  the	
  operator	
  frequencies	
  have	
  been	
  updated.

• ANCSEQ (*) - Ancestral	
  sequences	
  log	
  file	
  -­‐	
  At	
  the	
  end	
  of	
  the	
  heurisNc,	
  the	
  ancestral	
  sequence	
  probabili-­‐
Nes	
  of	
  each	
  internal	
  node	
  are	
  printed	
  into	
  the	
  'AncestralSequences.log'	
  file.

• PERF (*) – The	
  ‘Performances.log’	
  file	
  records	
  the	
  amount	
  of	
  Nme	
  (in	
  nanoseconds)	
  used	
  by	
  each	
  op-­‐
erator.	
  It	
  requires	
  disk	
  space	
  of	
  +/-­‐	
  1	
  Kb	
  per	
  iteraNon	
  of	
  the	
  heurisNc.
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8.	
  	
  	
  Appendix	
  2:	
  Using	
  the	
  Stochastic	
  Simulated	
  Annealing	
  (SSA)

Select the ‘Simulated Annealing’ radio button in the ‘Heuristic’ window to see all available parame-
ters (Fig. 31). We implemented 14 highly-parametrized cooling schedules in MetaPIGA, including 
the ‘Lundy’ cooling schedule [26, 43]. The user can control all cooling schedule parameters: the 
starting temperature computation method, the maximum acceptance probability, the temperature 
decrease frequency, and the possibility of ‘reheating’. Changing the cooling schedule in the ‘Heu-
ristic’ window will change the set of available parameters. Note that several of these cooling sched-
ules are quite similar to each others such that we might reduce the number of available schedules in 
future versions of MetaPIGA.

Fig. 31: The ‘Heuristic’ window with ‘Simulated annealing’ selected and the ‘Lundy schedule’ settings.

In each of the 14 available cooling schedules, Ti is the temperature after i decrements, and Γ is the 
maximum number of temperature decrements before reinitialization to T0 (the starting temperature). 
Except for the ‘Lundy schedule’, T0 (and TΓ when relevant) is computed as follows:

T0 =
−ΔL
lnA0

 	

 	

 and 	

 	

 TΓ =
−ΔL
lnAΓ

	

 	

 	

 	



where ΔL is the upper limit of likelihood change, whereas A0 and AΓ are, respectively, the initial 
and final ‘maximal acceptance parameter’, i.e., the maximal probability to accept a tree with a 
worse likelihood. Hence, A0 and AΓ define the initial and final temperature values, and the cooling 
schedule defines how the temperature is decreased between these two values. The various cooling 
schedules (and corresponding curve equations of temperature change) are listed below, with A0 and 
AΓ defined by the user. The cooling schedule requires defining the number of iterations (i.e., the 
number of times operators have been used to generate a change in the tree) after which a tempera-
ture decrement is performed. The user can choose either (i) the number of iterations (steps) or (ii) 
the number of successes (generating better trees) or failures (not generating better trees) required 
before a temperature decrement is performed. As decreasing the temperature translates into reject-
ing more easily trees with lower likelihoods, a reheating parameter allows defining when the tem-
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perature is reinitialized to T0 to facilitate crossing of valleys in likelihood space. Finally, the method 
for defining ΔL (required for computing the initial and final temperatures) is also chosen by the user 
either as the percentage of the Likelihood of the Neighbor-Joining tree or as an estimate generated 
by burn-in. In the latter case, each mutation operator is applied 20 times on the starting tree and the 
maximum difference of likelihood observed is used as ΔL. The table below shows the cooling 
schedules implemented in metaPIGA.

Cooling	
  schedule Corresponding	
  curve	
  equa4on curve

	
  Lundy	
  

	
  (with	
  c	
  and	
  α	
  as	
  
user-­‐defined	
  pa-­‐
rameters)

Ti+1 =
ΔL
1+ iβ

	
  	

 with	
  β =
c

(1−α )n +α
− ln NJT

m

β	
  is	
  the	
  cooling	
  rate	
  (its	
  value	
  is	
  <	
  1)	
  and	
  is	
  computed	
  using	
  parameters	
  
from	
  the	
  dataset:	
  n is the number of sequences, m is the number of 
aligned columns, c and α have values between 0 and 1, and lnNJT 
is the log likelihood of the neighbour-joining tree.

	
  Ra4o-­‐Percent	
  

	
  (with	
  parameter	
   )
Ti+1 = δTi 	

 with δ<1

	
  Fast	
  Cauchy Ti =
T0
i
	
  	
  	
  	
  

	
  Boltzmann 	
  Ti =
T0
ln i

	
  Geometric	
  

	
  (with	
  parameter	
   )
Ti = T0α

i 	

 with α<1

	
  Linear 	
  	
  Ti = T0 − i
(T0 − TΓ )

Γ

	
  Triangular 	
  Ti = T0
T0
TΓ

⎛
⎝⎜

⎞
⎠⎟

i /Γ

	
  Polynomial Ti =
(T0 − TΓ )(Γ +1)

Γ(i +1)
+ T0 −

(T0 − TΓ )(Γ +1)
Γ
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  Transcendental	
  
	
  -­‐	
  exponen4al Ti = TΓ +

(T0 − TΓ )
1+ e3(i−

Γ
2 )

	
  Transcendental
	
  -­‐	
  logarithmic 	
  Ti = T0e

−
i
Γ

⎛
⎝⎜

⎞
⎠⎟
2
ln
T0
TΓ

	
  Transcendental
	
  -­‐	
  periodic Ti =

(T0 − TΓ )
2

1+ cos iΠ
Γ

⎛
⎝⎜

⎞
⎠⎟
+ TΓ

	
  Transcendental
	
  -­‐	
  smoothed	
  peri-­‐
odic

	
  Ti =
(T0 − TΓ )

4
2 + cos8iΠ

Γ
⎛
⎝⎜

⎞
⎠⎟
e
−
i
2Γ

	
  Hyperbolic
	
  -­‐	
  tangent Ti =

(T0 − TΓ )
2

1− tanh(10i
Γ

− 5)⎛
⎝⎜

⎞
⎠⎟
+ TΓ

	
  Hyperbolic
	
  -­‐	
  cosinus

Ti =
(T0 − TΓ )
cosh 10iΓ

+ TΓ
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9.	
  	
  	
  Appendix	
  3:	
  A	
  simple	
  introduction	
  to	
  ML	
  phylogeny	
  inference

9.1.  Introduction 

	

 The Maximum Likelihood approach to phylogeny inference is based on the use of a substitu-
tion model that allows computing the likelihood of a tree, i.e., the probability that its topology and 
branch lengths (given the model parameters, such as instantaneous substitution rates, state frequen-
cies, gamma distribution of rates, etc) yielded the observed data. Substitution models used in the 
field of phylogeny inference are Markovian: the conditional probability distribution of future states 
depends only upon the present state, i.e., the probability of change of a character from state i to state 
j does not depend on the history of the character before state i. We also assume that the Markov 
process is homogeneous (i.e., the instantaneous substitution probabilities are identical everywhere 
in the tree) and time-reversible (the substitution rate i → j is identical to the substitution rate j → i). 
Given time reversibility, the likelihood of a tree does not depend on where that tree is rooted. In 
other words, trees are unrooted and the choice of outgroup taxa (orienting the tree in time) is an as-
sumption performed by the user. Finally, we assume that different characters (i.e., different posi-
tions in the multiple alignment) evolve independently, such that the likelihood of every character 
can be computed separately.

9.2.  The General-Time-Reversible (GTR) Model 

	

 The easiest way to represent a model is by using a matrix Q in which each element Qij is the 
instantaneous substitution rate from state i to state j. We use here the example of a 4x4 matrix for 
nucleotide substitutions, but the concept is the same for amino-acid substitutions or codon substitu-
tions (but the corresponding matrices are then 20x20 and 64x64, respectively).

Q =

−(µaπC + µbπG + µcπT ) µaπC µbπG µcπT

µgπ A −(µgπ A + µdπG + µeπT ) µdπG µeπT

µhπ A µiπC −(µhπ A + µiπC + µ fπT ) µ fπT

µ jπ A µkπC µlπG −(µ jπ A + µkπC + µlπG )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

where πi is the equilibrium frequency of state i, and μ is the mean instantaneous substitution rate. 
The latter is modified with relative rate parameters a, b, ..., l specific to each possible substitution. 
However, as indicated above, we use time-reversible models, such that a=g, b=h, c=j, d=i, e=k, and 
f=l. The diagonal elements of the matrix make the sum of each line equal to zero.

The instantaneous substitution rate matrix Q can be decomposed into a rate matrix R and an equilib-
rium frequency matrix Π:

Q = R X Π	

	

 	

 	

 	

 	

 	

 Equation 2

where
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R =

− µa µb µc
µa − µd µe
µb µd − µ f
µc µe µ f −

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

	

 	

 	

 	

 Equation 3

and 

Π =

π A 0 0 0
0 πC 0 0
0 0 πG 0
0 0 0 πT

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	

 	

 	

 	

 Equation 4

The mean instantaneous substitution rate can be computed as follows:

µ =
1

π i ′Qiji≠ j

A,C ,T ,G∑
	

 	

 	

 	

 	

 Equation 5

where

′Q =

− aπC bπG cπT

aπ A − dπG eπT

bπ A dπC − fπT

cπ A eπC fπG −

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	

 	

 	

 Equation 6

9.3. Computing the likelihood of a tree 

	

 The principle for estimating the likelihood of a tree is based on computing the probability of a 
substitution from state i to state j (with i and j possibly identical) given the length vx of the branch x. 
Given that a nucleotide in a sequence can experience multiple substitutions through time, the prob-
ability of observing a substitution between two nodes is not a linear function of the branch length vx 
but takes the form:

p(t) = e−λt    	

 	

 	

 	

 	

 	

 Equation 7

where λ and t are the substitution rate and the time, respectively. Note that it is not possible to sepa-
rate λ and t because a branch can be long due to a long time and/or a large rate. In other words, the 
branch length is λt. 

When considering the GTR model, the equation takes the form

p(t) = eQt 	

 	

 	

 	

 	

 	

 Equation 8
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Where Q is the instantaneous substitution matrix (equation 1). The equation can be computed by 
using the eigenvectors and eigenvalues of the matrix.
Partitions are incorporated in the computation by multiplying t (in Equation 8) by Θp, i.e., the rela-
tive rate of partition p. Relative rates of partitions are optimized separately but each partition is 
weighted according to its size (S(p)), and the weighted average of among-partitions rates is con-
strained to 1, i.e., 

	

 S(p).Θ p
p

nPar

∑ = 1 	

 	

 	

 	

 	

 Equation 9

Let’s take a simple example. If the observed sequence data, and the tree to evaluate, are respec-
tively:

Taxon_1   ACCGTCATCAGG
Taxon_2   GCTATCGCCAGC
Taxon_3   ACCGTTATCAGG
Taxon_4   GCTGTCGTCAGG

             

v1 v2

v3 v4
v5

T2
T1

T3
T4

y x

Friday, April 23, 2010

the likelihood of that tree is the probability to generate the observed data given the substitution 
model. The process is performed separately for each position (each column in the alignment). Let’s 
consider the first position (underlined in the sequence alignment above). The states at the internal 
nodes X and Y are unknown. Imagine that both X and Y were of state A. Given that Taxa 1 and 3 ex-
hibit a A, and that Taxa 2 and 4 exhibit a G, the full probability of observing the first position given 
the tree is the Probability to: 

observe no change between Y(=A) and Taxon_1(=A) given branch length v1 
AND	

 	

 observe no change between Y(=A) and Taxon_3(=A) given branch length v3
AND	

 	

 observe a change from X(=A) to Taxon_2(=G) given branch length v2
AND	

 	

 observe a change from X(=A) to Taxon_4(=G) given branch length v4
AND	

 	

 observe no change from X(=A) to Y(=A) given branch length v5

In probabilistic terms, the full probability of observing states A, G, A, and G for, respectively, the 
sequences 1, 2, 3, and 4, GIVEN that the internal nodes X and Y exhibit the state A is: 

h(A,G,A,G⎮X=A,Y=A) = PAA(v1) . PAA(v3) . PAG(v2) . PAG(V4) . PAA(V5)	

 	

 Equation 10

However, we don’t know the unobserved states of the internal nodes, such that the combination 
considered above (X=Y=A) is only one possibility. Hence, we have to consider each possible com-
bination of states. In the simple tree above, there are only 2 internal nodes and 16 possibilities: 

X=A and Y=A	

 combination 1
X=A and Y=G	

 combination 2
X=A and Y=C	

 combination 3
...
X=T and Y=T	

 combination 16
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Hence, the full probability of generating the first position in the alignment above (i.e., states A, G, 
A, and G for, respectively, the sequences 1, 2, 3, and 4) is the sum of the probabilities of combina-
tions 1 to 16. In other words, the real (unobserved) states of the internal nodes corresponded to 
combination 1 or combination 2 .... or combination 16. In probabilistic terms, we therefore need to 
compute:

Prob(combination 1) + Prob(combination 2) + ... + Prob(combination 16)	

 	

 Equation 11

	

 where “Prob(combination 1)” is equation 10.

To generalize, the likelihood of observing the first position of the alignment above given the follow-
ing tree

seq1 ACCGTCATCAGG
seq2 GCTATCGCCAGC
seq3 ACCGTTATCAGG
seq4 GCTGTCGTCAGG

v1 v2

v3 v4
v5

T2
(G)

T1
(A)

T3
(A) T4

(G)

y x

 

h(A,G,A,G) = gxPxG(v 4)PxG(v 2) Pxy(v 5)PyA(v1)PyA(v 3)
y
!

x
!

P(t) = e
Rt

is (equation 12):

 

seq1 ACCGTCATCAGG
seq2 GCTATCGCCAGC
seq3 ACCGTTATCAGG
seq4 GCTGTCGTCAGG

v1 v2

v3 v4
v5

T2
(G)

T1
(A)

T3
(A) T4

(G)

y x

 

h(A,G,A,G) = gxPxG(v 4)PxG(v 2) Pxy(v 5)PyA(v1)PyA(v 3)
y
!

x
!

P(t) = e
Rt

Note the parameter gx in equation 12, which is the equilibrium frequency of state x.  

Finally, the likelihood of the tree given the full alignment is

L = Li
i
∏  	

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 Equation 13

	

 where Li is the likelihood of position i.

To avoid the manipulation of exceedingly small values, it is much more convenient to compute the 
log likelihood of a tree as follows:

lnL = lnLi
i
∑ 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 Equation 14

   Much additional information can be found in the references given in the ‘Background’ Section 
(Section 2) of this manual.
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