
v3.0b0

Maximum likelihood large phylogeny estimation
using the metapopulation genetic algorithm (MetaGA)

& other stochastic heuristics

Manual version 3.1 (Feb 19, 2013)

Đorđe Grbić & Michel C. Milinkovitch
Lab. of Artificial & Natural Evolution (LANE),
Dept of Genetics & Evolution,
University of Geneva,
Switzerland

www.lanevol.org

Raphaël Helaers
Lab. of Human Molecular Genetics (GEHU)
de Duve Institute, UCLouvain,
B-1200 Brussels
Belgium

MetaPIGA 3.0 manual p1

http://www.lanevol.org
http://www.lanevol.org

TABLE OF CONTENTS
___1. In a nutshell! 3
___2. Background! 4

_________________________________3. The metaGA algorithm & MetaPIGA! 5
___4. The software MetaPIGA! 6

..4.1. Availability 6
..4.2. Recommended citations 6

................4.3. CPU, GPU, Operating Systems, and memory requirements 6
__5. Using MetaPIGA! 10

..5.1. Summary 10
..5.2. Launching MetaPIGA & opening a file 11

..5.3. [D] Dataset Settings 13
5.3.1 Overview 13
5.3.2 The ‘Dataset’ tab 14
5.3.3 The ‘Codons’ tab 16

...5.4. [A] Analysis Settings 18
5.4.1. The ‘Heuristic’ tab 18
5.4.2. The ‘Evaluation criterion’ tab 21
5.4.3. The ‘Starting tree(s)’ tab 24
5.4.4. The ‘Operators’ tab 25
5.4.5. The ‘Miscellaneous’ tab 27
5.4.6. Exiting the Settings Window 30

...5.5. [R] The Run window 31
...5.6. [T] The tree viewer 33

5.6.1. Viewing and evaluating trees 33
5.6.2. Ancestral states reconstruction 34

...................................5.7. Building and running batch files with the GUI 35
5.7.1. Transferring analysis settings among datasets 35
5.7.2. Duplicating datasets for batch files 35

...5.8. Building batch files manually 36
...5.9. The ‘Tools’ Menu 38

...5.10. Troubleshooting 39
__6. Acknowledgements! 40

______________________________7. Appendix 1: The MetaPIGA commands! 41
__________8. Appendix 2: Using the Stochastic Simulated Annealing (SSA) ! 53
__________9. Appendix 3: A simple introduction to ML phylogeny inference! 56

..9.1. Introduction 56
.......................................9.2. The General-Time-Reversible (GTR) Model 56

..9.3. Computing the likelihood of a tree 57
...10. Bibliography! 60

MetaPIGA 3.0 manual p2

1.	 	 	 In	 a	 nutshell

	
 The development of heuristics implemented in robust application softwares has made large
phylogeny inference a key step in most comparative studies involving molecular sequences. The
choice of a phylogeny inference software is not only dictated by the raw performance (speed) of the
algorithm(s) and of its (their) implementation, the availability of complex substitution models, and
the accuracy of the resulting trees, but also by a combination of parameters pertaining to the ease-
of-use and the availability of specific functionalities.
	
 Here, we present the manual of MetaPIGA, a robust implementation of several stochastic
heuristics for large phylogeny inference (under maximum likelihood), including a Random-Restart
Hill Climbing, a Stochastic Simulated Annealing (SSA) algorithm, a classical Genetic Algorithm
(GA), and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution
models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA handles
nucleic-acid and protein datasets as well as morphological (presence/absence) data. The benefits of
the metaGA ([1] Lemmon & Milinkovitch 2002; PNAS, 99: 10516-10521) are as follows: (i) it
resolves the major problem inherent to classical Genetic Algorithms (i.e., the need to choose
between strong selection, hence, speed, and weak selection, hence, accuracy) by maintaining high
inter-population variation even under strong intra-population selection, and (ii) it generates branch
support values that approximate posterior probabilities.
	
 The software MetaPIGA also implements:
✓ Simple dataset quality control (testing for identical sequences and excessively ambiguous or

excessively divergent sequences);
✓ Automated trimming of poorly aligned regions using the trimAl algorithm [2];
✓ The Likelihood Ratio Test, Akaike Information Criterion, and Bayesian Information Criterion for

the easy selection of nucleotide and amino-acid substitution models that best fit the data;
✓ Ancestral-state reconstruction of all nodes in the tree;
✓ Codon models for the analysis of protein-coding nucleotide sequences;
✓ Faster Likelihood computation on Nvidia graphics cards;
✓ Automated stopping rules based on convergence statistics.
MetaPIGA provides high customization of heuristics’ and models’ parameters, manual batch file
and command line processing. However, it also offers an extensive and ergonomic graphical user
interface and functionalities assisting the user for dataset quality testing, parameters setting,
generating and running batch files, following run progress, and manipulating result trees.
	
 MetaPIGA uses standard formats for data sets and trees, is platform independent, runs in 32-
and 64-bits systems, and takes advantage of multiprocessor and/or multicore computers. Note
that MetaPIGA allows the use of the XtremWeb-CH infrastructure for distribution of multiple jobs
on a Grid.

	
 MetaPIGA is freely available to academics at www.metapiga.org and www.lanevol.org

MetaPIGA 3.0 manual p3

http://www.pnas.org/content/99/16/10516.full
http://www.pnas.org/content/99/16/10516.full
http://www.xtremwebch.net/
http://www.xtremwebch.net/
http://www.metapiga.org
http://www.metapiga.org
http://www.lanevol.org
http://www.lanevol.org

2.	 	 	 Background

Phylogeny inference allows, among others, detecting orthology/paralogy relationships among
gene-family members (e.g., [3-6]), estimating divergence times and evolutionary rates (e.g., [7-9]),
reconstructing ancestral sequences (e.g., [10-14]), identifying molecular characters constrained by
purifying selection or which experienced positive selection (e.g., [15]), uncovering hidden
biodiversity (e.g., [16]), and mapping the evolution of morphological, physiological,
epidemiological, biogeographical, and even behavioral characters [17, 18]. Molecular phylogeny
inference is now a mature science, and an important part of the maturation process pertained to the
realization (since the late 1990’s) that the quest for the Holy Grail of THE absolute best tree should
be abandoned for a much more meaningful goal: the inference of clades and trees robustness. Still,
this objective remained intractable in practice because of (a) the NP-hard nature of optimality-
criterion-based phylogeny inference (i.e., no algorithm can solve it in polynomial time; [19, 20])
and (b) the large computing-time requirements when using complex substitution models (and rate
heterogeneity across sites) in the framework of what has been identified as the probable most robust
optimality criterion: Maximum Likelihood (ML; [21-23]; See Appendix 3 for an introduction to
ML). Today large phylogeny inference is incorporated, across biological disciplines, as an essential
step in most comparative studies involving nucleotide or protein sequences. This has been made
possible thanks to both theoretical and practical developments.

First, one key advance that made large phylogeny inference tractable is the implementation in
this field of stochastic heuristics with inter-step optimization, i.e., a family of approaches that
existed for decades in physics and computer science and explore multidimensional solution spaces
in a much more efficient manner than the older intra-step optimization hill-climbing methods.
Indeed, in the latter, one prime parameter (typically, the topology of the tree) is modified and all
other parameters are optimized before the new solution is evaluated whereas, in stochastic
heuristics, all free parameters are optimized while the search proceeds. Inter-step optimization
methods include Markov Chain Monte Carlo (MCMC) approximations of the Bayesian approach
[24, 25], stochastic simulated annealing [26], and genetic algorithms [1, 27-30]. The efficiency of
stochastic heuristics is quite counterintuitive but can be explained by several factors: (a) poorer
solutions are accepted with a non-null probability (contrary to hill-climbing that strictly restricts
moves toward better likelihood values) such that valleys in likelihood space can eventually be
crossed; and (b), parameters are not over-optimized (e.g., starting and intermediate trees are
generally largely sub-optimal, hence, optimizing model parameters on these trees is a clear example
of over-fitting). In addition, we think that avoiding over-optimization at every topology evaluation
generates a flatter likelihood-space shape, such that valleys are more easily crossed and local optima
more easily escaped. This suggestion however requires further investigation.

Second, several stochastic methods have been incorporated into robust application softwares.
The importance of that point should not be underestimated. For example, the success of Bayesian
methods is probably due as much to its incorporation into robust and efficient software (e.g.,
MrBayes; [31]) as to the theoretical appeal of generating marginal posterior probabilities [25]. The
software RaxML [32], enjoys deserved popularity because it is one of the fastest ML phylogeny
inference programs available to date (despite that it does not incorporate stochastic methods) thanks
to the implementation of approximations to rate heterogeneity across sites and smart computer
science tricks speeding up likelihood computation: optimized parallel code and ‘Subtree Equality
Vectors’ (i.e., the extension of character compression to the subtree level). Similarly, highly efficient
parallel code has recently been implemented for the evaluation of phylogenies on graphics
processing units (GPUs), resulting in 10 to 100-fold speed increase over an optimized CPU-based
computation [33]. This efficient use of new hardware, existing stochastic heuristics (in this case, an
MCMC approach in a Bayesian framework), and smart code parallelization for efficient harnessing
of the hundreds of GPU processing cores allowed the authors to use a 60-state codon model on a

MetaPIGA 3.0 manual p4

dataset of 62 complete mitochondrial genomes. Note that MetaPIGA now implements GPU
computation (since version 3.0b0).

The availability of multiple excellent softwares implementing different robust heuristics is
clearly an asset for the end user: reliable results might be identified because they remain stable
across softwares and methods. However, many users chose one single main software for their
analyses, and this choice is sometimes dictated by availability of functionalities of importance (e.g.,
batch analyses, GTR nucleotide substitution model [34] and rate heterogeneity [35-37], possibility
to partition data) but that do not pertain to the performances of the specific heuristic implemented.
Finally, given that the need to infer large trees is critical in multiple biological disciplines, the non-
specialist can be baffled by the large number of available heuristics, parameters, and softwares, such
that the most user-friendly tools are sometimes preferred even if more robust or more efficient (but
less user-friendly) softwares are available.

There is therefore a challenge to supply softwares that are both easy to use for the non-
specialist, provide flexibility for the specialist, and allow fast and robust inference for both. We
hope MetaPIGA version 3 provides a solution to this conundrum.

3.	 	 	 The	 metaGA	 algorithm	 &	 MetaPIGA

The Metapopulation Genetic Algorithm (MetaGA; [1]) is an evolutionary computation
heuristic in which several populations of trees exchange topological information which is used to
guide the Genetic Algorithm (GA) operators for much faster convergence. Despite the fact that the
metaGA had initially been implemented in a simple and unoptimized software (metaPIGA-v1)
together with simple nucleotide substitution models, an approximate rate heterogeneity method, and
only a low number of functionalities, it has been suggested as one of the most efficient heuristics
under the ML criterion. Furthermore, multiple metaGA searches provide an estimate of the posterior
probability distribution of trees [1].
	
 The metaGA resolves the major question inherent to classical GA approaches: should
one use a soft or a stringent selection scheme? Indeed, strong selection produces good solu-
tions in a short computing time but tend to generate sub-optimal solutions around local op-
tima. Conversely, mild selection schemes considerably improve the probability to escape local
optima and find better solutions, but greatly increase computing time. As the metaGA involves
several parallel searches, initial inter-population variation can be very high (especially if ran-
dom or pseudo-random starting trees are used), and somewhat maintained during the search,
even under extreme intra-population selection.
	
 Although the metaGA has been shown to perform very well [1, 38, 39] it initially did not im-
plement complex substitution models, discrete Gamma rate heterogeneity, and the possibility to par-
tition data. Here, we present MetaPIGA version 3, a program in which we performed such an im-
plementation, both for nucleotide and protein data, together with a hill climbing, a classical Genetic
Algorithm (GA), and a Stochastic Simulated Annealing (SSA) algorithm. MetaPIGA version 3 also
implements dataset quality control, automated trimming of poorly aligned regions, criteria (Likeli-
hood Ratio Test, Akaike Information Criterion, and Bayesian Information Criterion) for the easy
selection of nucleotide and amino-acid substitution models that best fit the data, ancestral-state re-
construction of nodes, Codon models for the analysis of protein-coding nucleotide sequences, faster
Likelihood computation on Nvidia graphics cards, and automated stopping rules based on conver-
gence statistics. MetaPIGA can also be parallelized on a Grid of computers.
	
 MetaPIGA gives access both to high parameterization, as well as to an ergonomic interface
and functionalities assisting the user for sound inference of large phylogenetic trees.

MetaPIGA 3.0 manual p5

4.	 	 	 The	 software	 MetaPIGA

4.1. Availability
The software MetaPIGA is freely available to academics at www.metapiga.org , and is avail-

able for Windows, Mac OSX, and Linux. Note that, each time you launch MetaPIGA, it checks for
the availability of updates. MetaPIGA will always request your authorisation to perform such an
update. This manual is also available in the MetaPIGA help menu.

Disclaimer. MetaPIGA is provided without warranty of any kind. The authors and their institutions do not warrant guarantee, or
make any representation regarding the use or the results of the program or manual in terms of their correctness, reliability, or other-
wise. In no case will the authors and their respective institutions be liable for any direct, special, indirect, incidental, consequential,
or other damages arising from using the metaGA and/or any version of MetaPIGA and/or this manual and/or any supporting material.
MetaPIGA is freely available only to Academics. If you are working for a commercial company and are planning to use MetaPIGA,
please, contact michel.milinkovitch -at- unige.ch

4.2. Recommended citations
The Consensus Pruning (CP) and the Metapopulation Genetic Algorithm (metaGA) were

originally described in the first reference below, whereas the version 2 of MetaPIGA (the software
implementing the MetaGA and other heuristics) is described in the second. Hence, we would be
grateful if you could cite these two references when publishing results produced with MetaPIGA
version 3.

✓ Lemmon A.R. & M. C. Milinkovitch
The metapopulation genetic algorithm: an efficient solution for the problem of large phylogeny
estimation
Proceedings of the National Academy of Sciences (PNAS), USA, 99: 10516-10521 (2002)

✓ Helaers R. & M. C. Milinkovitch
MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic
algorithm and other stochastic heuristics
BMC Bioinformatics 2010, 11: 379

4.3. CPU, GPU, Operating Systems, and memory requirements
CPU & Operating Systems. As optimality-criterion phylogeny inference in general, and ML

inference in particular, is a computer intensive endeavour, fast CPUs are always preferable, even
when using powerful heuristics such as MC3 or the metaGA. Using a ranid frog dataset (provided
with the software as one of the example datasets) of 64 taxa X 1976 nucleotides each, a typical
metaGA run (4 populations of 4 individuals, and default parameter values) will take approximately
2 minutes to complete under a simple model (Jukes-Cantor) and about 20 minutes under a complex
model (GTR + gamma distributed rate heterogeneity) on a single core of a 2.27 GHz Intel Xeon
processor (you can easily reduce running time by distributing replicates on several cores, see be-
low). Hence, when using datasets of over 100 taxa and when performing replicates (to estimate pos-
terior probabilities of clades; see below), you should expect runs to last several hours. If you are
experienced in the use of MrBayes [31], take as a rule of thumb that a thorough analysis using the
MetaGA requires a running time similar to that of using MrBayes with the same dataset.

MetaPIGA is written in Java 1.6 such that the single code runs on 32 and 64-bits platforms
under MacOS X, Linux, and Windows. We use the Java Multi-Threading technology to take advan-
tage of multiprocessor and/or multicore computers, such that some tasks can be run in parallel. As
replicates are independent, they are particularly prone to parallelization: different replicates can be
assigned to any number of different processor cores (typically 4 - 12 in most 2013 machines). In
addition, the metaGA heuristic itself is well suited to parallel implementation because many proc-

MetaPIGA 3.0 manual p6

http://www.metapiga.org
http://www.metapiga.org
http://www.pnas.org/content/99/16/10516.abstract
http://www.pnas.org/content/99/16/10516.abstract
http://www.biomedcentral.com/1471-2105/11/379/abstract
http://www.biomedcentral.com/1471-2105/11/379/abstract

esses (mutations, selection, and likelihood computation) are independent across populations. Hence,
different metaGA populations can be distributed to different processor cores. Parallelization of
metaGA populations can be combined with parallelization of replicates (e.g., 16 cores allow run-
ning simultaneously 4 metaGA replicates with 4 populations treated simultaneously at each repli-
cate). Note that distributing different replicates to different cores is more efficient (in terms of com-
putation speed-up) than distributing different populations to different cores1. Hence, parallelization
of populations usually increases running speed by about 0.3n whereas parallelization of replicates
increases running speed by almost n (where n= the number of CPU cores you assigned to
MetaPIGA).

 Computing on GPU (Graphics cards). Analyses of protein or codon datasets are particu-
larly long because of the high number of possible state substitutions (20x20 for amino-acid data;
64x64 for Codon data). In such cases, performance can be substantially increased if likelihood
computation is performed on GPUs (Graphics processing units), also called ‘Graphics cards’. These
are devices that provide fine-grained parallelization. MetaPIGA version 3 can run on CUDA-
capable graphics cards from Nvidia Corporation. The graphics card’s compute capability has to be
at least 2.0. The list of CUDA-capable graphics cards can be found on the following web site:
https://developer.nvidia.com/cuda-gpus. Note that the performances of GPUs are low for nucleotide
sequence data, substantial for protein sequence data, and spectacular for codon sequence data.

In order to make use of the available supported graphics card, appropriate CUDA drivers have to be installed. The drivers
and the installation instructions can be found on the following web site:
https://developer.nvidia.com/cuda-toolkit-42-archive. Be sure to install the 4.2 Toolkit version and the drivers that come
with that version of the CUDA Toolkit. MetaPIGA v.3 hasn’t been tested on the newer versions of the CUDA Toolkit.
If you’re using a Linux distribution with graphics card, prior to launching MetaPIGA, you must set the environment vari-
able that points to the CUDA library, like this:

export LD_PRELOAD={path to the CUDA library}:$LD_PRELOAD
Where {path to the CUDA library} points to the ‘libcuda.so’ CUDA library.
For example on one of our machines this variable setting looks like this:
export LD_PRELOAD=/usr/lib/nvidia-current/libcuda.so:$LD_PRELOAD

	
For best performances, the graphics card must have enough built-in memory (see the ‘memory’
sections below).

The Grid. If you are a user of the XtremWeb-CH infrastructure, you can use a Grid to per-
form your data analysis with coarse grained parallelization. This means that different replicates are
computed on the different worker computers on the Grid. If you have 100 computers on your grid,
your analysis will be about 100 times faster.

In order to use the grid, first you have to have an account on the XWCH. After you make an account, you have to ask the
XtremWeb-CH support to connect a MetaPIGA module to your account. When the MetaPIGA module is ready, you have to
upload the MetaPIGA binaries to your MetaPIGA module. Provided with MetaPIGA is a small program that uploads these
binaries to the grid. This program is available in the MetaPIGA base folder on your computer in the subfolder
‘XWCH_bin_uploader’. You will have to provide the ‘MetaPIGA 3.jar’ that is in the base MetaPIGA folder, your user
identification number, the grid server address, and the MetaPIGA module ID. These informations can be found in your
XtremWeb-CH interface. If you can’t find them, consult with the XtremWeb-CH project people. Note that, every time
MetaPIGA is updated, you will have to upload the binaries again in order to have the latest version of the MetaPIGA on the
grid. For the user documentation, please, refer to the following web site:

http://www.xtremwebch.net/mediawiki/index.php/How_use

Memory. Computing and storing the likelihood of large trees require large amounts of
Random-Access Memory (RAM). Note that 32-bits systems can allocate a maximum of ~2Gb of
memory to the Java Virtual Machine (JVM), whereas 64-bits systems are limited only by the
amount of memory installed on the computer (the theoretical limit is 16 billions gigabytes). The

MetaPIGA 3.0 manual p7

1 Indeed, under CP, different populations of a single metaGA search must exchange topological information, hence, the
running time at each generation is limited by the population which is slowest to complete. On the other hand, different
replicates are totally independent.

http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-toolkit-42-archive
https://developer.nvidia.com/cuda-toolkit-42-archive
http://www.xtremwebch.net/
http://www.xtremwebch.net/
http://www.xtremwebch.net/mediawiki/index.php/How_use
http://www.xtremwebch.net/mediawiki/index.php/How_use

equation below allows calculating the number of Giga-bytes of free RAM (i.e., RAM that must be
available when your OS is running) you will need for using MetaPIGA:

 RAM (Gb) =
Tr ⋅ N ⋅ D ⋅C ⋅ S ⋅ Pr ⋅ 4

10243

where Tr is the number of trees used at each generation, N is the number of nodes in the tree (=2T-1,
where T is the number of taxa), D is the number of data patterns2, C is the number of discrete cate-
gories of the gamma distribution (typically, 4), and S is the number of possible character states
(S=4, S=20, and S=64 for DNA, protein, and Codon characters, respectively). Pr is the number of
CPU cores assigned to the parallelization of replicates: doubling the number of CPU cores assigned
to different replicates doubles the speed of the search but also doubles the amount of required
RAM.

The number of trees (Tr) used at each generation by MetaPIGA depends on the heuristic chosen:
✓ Tr = 3 for ‘Hill Climbing’ (HC) and for ‘Simulated Annealing’ (SA);
✓ Tr = I+1 for the ‘Genetic Algorithm’ (GA) under ‘Improve’, ‘Replacement’, and ‘Keep the best’ selection

schemes;
✓ Tr = I*2+1 for the ‘Genetic Algorithm’ (GA) under ‘Tournament’, and ‘Rank’ selection schemes;
✓ Tr = P*I+1 for the ‘Metapopulation Genetic Algorithm’ (MetaGA) under ‘Improve’, ‘Replacement’, and ‘Keep

the best’ selection schemes;
✓ Tr = (P+1)(I+1) for the ‘Metapopulation Genetic Algorithm’ (MetaGA) under ‘Tournament’, and ‘Rank’ selec-

tion schemes with one CPU core;
✓ Tr = (2P)(I+1) for the ‘Metapopulation Genetic Algorithm’ (MetaGA) under ‘Tournament’, and ‘Rank’ selection

schemes with more than one CPU core;
P is the number of populations and I is the number of individuals per populations.

For example, using a computer with 4 CPU cores, and using the metaGA (with ‘Improve’ Selection)
with 4 populations of 4 individuals, and rate heterogeneity with 4 Gamma-rate categories on a DNA
dataset of 120 taxa and 4000 nucleotides (hence, about 2500 data patterns, although that number
can vary, depending on each specific dataset), will require about:

a. 2.4 Gb of RAM for a single core assigned to each replicate but 4 cores assigned to 4 simul-
taneous replicates;

b. 1.2 Gb of RAM for 2 cores assigned to each replicate and 2 cores assigned to 2 simultaneous
replicates.

Note that option a. will be significantly faster than option b. Also note that:
✓ The amount of RAM computed above is a lower bound as the storage of the dataset itself can

take a few hundreds Mb;
✓ An estimate of the amount of RAM necessary for your analysis is indicated in the parameter

summary panel of the main window (Fig. 2) as well as in the lower-left corner of the ‘Analysis
settings’ window (Fig. 9 to 18), on the basis of the parameters you have chosen in that same

MetaPIGA 3.0 manual p8

2 A data pattern is an aligned column with a specific combination of states. One pattern can occur several times within
the same dataset. For example, the character columns 1, 8 & 9 below are identical, hence, their likelihoods are identical
and must be computed only once (but used three times for computing the joint likelihood). Similarly, characters 3 & 7
are identical. The example dataset below exhibits 9 characters but only 5 patterns. The number of data patterns is indi-
cated in the ‘MetaPIGA data matrix’ tab (see Fig. 3)

 Character-->1 2 3 4 5 6 7 8 9 Pattern --> 1 2 3 4 5
Taxon1 A G T G C C T A A Taxon1 A G T G C
Taxon2 A G T G C C T A A Taxon2 A G T G C
Taxon3 T T T G C C T T T -> Compress -> Taxon3 T T T G C
Taxon4 T T T G C C T T T Taxon4 T T T G C
Taxon5 T - T G C C T T T Taxon5 T - T G C
 Pattern --> 1 2 3 4 5 5 3 1 1 Weight --> 3 1 2 1 2

window. In both windows, the estimate turns red if you exceed the amount of memory you allo-
cated to MetaPIGA.

As indicated in Figure 1a, you can choose the amount of RAM assigned to MetaPIGA in the menu:
‘Tools’ ➙ ‘Memory Settings’). You will be prompted by the program to do so if you experience an
out-of-memory error during the use of MetaPIGA. The amounts of memory assigned, used, and
available can be found in the menu ‘Help’ ➙ ‘System informations’ (Fig. 1b).

Fig. 1: The metaPIGA (a) Memory Settings and (b) System Information windows

 Graphics card memory. For best performances, the graphics card must have enough built-in
memory. To calculate the minimum amount of memory in megabytes, use the following formula:

RAMopt

GPU (Mb) =
12 ⋅C ⋅ D ⋅ S + 8 ⋅C ⋅ D + 16 ⋅C ⋅ S 2 + 8 ⋅C + 12 ⋅ D + 16 ⋅ S 2 + 16 ⋅ S

10242
.

Where D is the number of data patterns (see above), C is the number of discrete categories of the
gamma distribution (typically, 4), and S is the number of possible character states (S=4, S=20, and
S=64 for DNA, protein, and codon sequences respectively).
If the amount of available memory is less than that computed above, MetaPIGA will have to split
the data into pieces before sending it to the GPU, which in turn degrades the performances of the
GPU. To calculate the minimum of built-in GPU memory needed, use the following formula:

RAM min

GPU (Mb) =
8 ⋅C + 12 ⋅ D + 8 ⋅C ⋅ D + 16 ⋅ S + 384 ⋅C ⋅ S + 16 ⋅ S 2 + 16 ⋅C ⋅ S 2

10242
.

MetaPIGA 3.0 manual p9

5.	 	 	 Using	 MetaPIGA

5.1. Summary
	
 MetaPIGA uses standard formats: reading and writing datasets in Nexus format [40] and trees
in Newick format. Note that aligned datasets in Fasta format can also be imported in MetaPIGA. All
search settings can be saved in a metaPIGA block incorporated into the Nexus file, allowing easy
management and runs on distant servers. A Nexus file without a metaPIGA block will be correctly
interpreted by MetaPIGA and will run with default parameters (but it will skip other programs
blocks such as ‘Paup’ or ‘Assumptions’ blocks). Note that the command “Endblock” often used in
Paup data files is not a standard Nexus command and will not be recognized by MetaPIGA (please,
use the standard Nexus command “END” instead). The minimum requirements are a DATA block
(defining the datatype, the number of taxa and the number of characters), including a MATRIX com-
mand (i.e., with the sequence data; if the matrix is in interleave form, please, indicate it in the DATA
block) with each sequence beginning with the sequence name separated from the sequence itself by
at least one space. Standard ambiguity characters are accepted (see below) and missing data (de-
fined by the ‘MISSING’ command; default is ‘?’) are automatically converted to ‘N’ (nucleotide se-
quences) or ‘X’ (amino-acid sequences). Gaps (defined by the ‘GAP’ command; default is ‘-’) can be
removed (with the corresponding character in other taxa) or treated as ‘N’ (see Section 5.3).

Example of Nexus file with nucleotide data.
#NEXUS
BEGIN DATA;
	
 DIMENSIONS NTAX=5 NCHAR=12;
	
 FORMAT DATATYPE=DNA interleave
	
 MISSING=? GAP=- ;
MATRIX
mysequence_T1 AGTGCCTGATTG
mysequence_T2 AGTGCCTGATCG
mysequence_T3 TTTGCCTG---G
mysequence_T4 TTTGCCTAATCG
mysequence_T5 T-TGCCTAATCG
;
END;

The standard ambiguity code for DNA sequences.

M = A or C
V = A or C or G (not T)
R = A or G
H = A or C or T (not G)
W = A or T
D = A or G or T (not C)
S = C or G
B = C or G or T (not A)
N = A or C or G or T

Example of Nexus file with protein data.
#NEXUS
BEGIN DATA;
	
 DIMENSIONS NTAX=5 NCHAR=12;
	
 FORMAT DATATYPE=PROTEIN interleave
	
 MISSING=? GAP=- ;
MATRIX
mysequence_S1 QSGT
mysequence_S2 RSGT
mysequence_S3 P-GK
mysequence_S4 RLGK
mysequence_S5 RLG-
;
END;

The standard ambiguity code for PROTEIN se-
quences.

B = N or D
Z = Q or E
J = I or L
X = any amino-acid

	
 MetaPIGA can be run in command line (cf. end of ‘Section 5.2’, then jump directly to Sec-
tions 5.7 and 5.8 as well as Appendix 2), but it also offers an extensive graphical user interface
(GUI) for access to:

✓ Dataset setting (Fig. 4-9) : defining and managing charsets; including/excluding taxa, characters,
and charsets; defining and managing dataset partitions; changing nucleotide sequences to codon
sequences and vice versa;

MetaPIGA 3.0 manual p10

http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html

✓ Analysis settings (Fig. 10-18): choosing and customizing heuristics; defining substitution models
and their parameters; choosing starting-tree options; controlling operators; defining stop criteria
and replicates, managing multi-core processing.

All settings are associated with an interactive ‘mouse-over’ help system such that, if you are an
experienced phylogeneticist, you probably don’t need this manual much ;).
	
 MetaPIGA implements simple dataset quality controls (testing for the presence of identical
sequences and for excessively ambiguous or excessively divergent sequences) and automated trim-
ming of poorly aligned regions using the trimAl algorithm [2]. MetaPIGA also implements statisti-
cal methods for selecting substitution models that best fits the data ([41]; and refs therein): the
Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion.
	
 The MetaPIGA GUI provides a detailed run window showing graphs specific to the corre-
sponding heuristic. For example,, for a metaGA search with replicates, the run window shows: (i)
the current best likelihood progression of each population and (ii) the current topology, posterior
probability values, and average branch lengths of the consensus tree.
	
 Batch files are particularly useful for running sequentially a single data set under multiple dif-
ferent settings or several datasets with the same settings. MetaPIGA supports the use of batch files
that can be either written manually (see Section 5.8) or generated using tools available in the GUI
(see Section 5.7): datasets and their settings can be duplicated, settings can be “stamped” from one
dataset to another, and multiple combinations of datasets and settings can be saved in a batch file
that can be run either in the GUI (with various graphical information on search progress) or using
command line.
	
 Input and result trees are manipulated in Newick format, but visualized graphically in the
GUI, and can be exported for other programs. MetaPIGA also integrates a Tree Viewer that allows
viewing, re-rooting, and printing trees as well as computing the likelihood of any tree (under any
available substitution model) and optimizing its model parameters. Five other tools are imple-
mented: a Tree Generator (using the starting tree settings), an Ancestral State Reconstruction
viewer (associated with the Tree Viewer), a Consensus Builder (using user-trees and/or trees saved
in the ‘Tree Viewer’), a tool for computing Pairwise Distances, and a Memory Settings tool defin-
ing the maximum amount of memory allocated to the program. See section 5.9 for details.

5.2. Launching MetaPIGA & opening a file
	
5.2.1. Loading a file
Double-clicking a ‘.nex’ file (on Windows and Mac OS X) launches MetaPIGA and opens the
Nexus file. If it does not, launch MetaPIGA by double-clicking the application icon and open your
NEXUS (or FASTA) file by clicking on the ‘Load Nexus file’ button (Figs. 2 & 3) or by select-
ing in the menu: ‘File’ ➙ ‘Load a Data File (Nexus or Fasta format)’. Several Nexus files can be
loaded sequentially using the Load Nexus File button/command but multiple files can also be
dragged and dropped from the OS navigator to the left panel of the MetaPIGA main window (Fig.
2). The upper-right and lower-right panels of the main window indicate the parameters and the data
matrix, respectively, obtained from the corresponding Nexus/Fasta file (Fig. 2). The entry window
gives access to a second tab (arrow in Fig. 2) that shows the compressed data matrix and indicates
the number of data patterns and base frequencies.
5.2.2. Data quality control & alignment trimming
Hitting the ‘scissor’ button (Fig. 2) in the center of the main window will successively launch
quality tests for:
✓ The presence of excessively ambiguous sequences: sequences with >40% ambiguities (gaps and

N/X) will be detected and will be proposed to be automatically removed.

MetaPIGA 3.0 manual p11

✓ The presence of redundant sequences: groups of identical sequences will be detected and only
one sequence (with the lowest number of ambiguities) will be kept for each such group3.

✓ The presence of excessively divergent sequences: if sequences generating large uncorrected
pairwise distances (85% for proteins, 65% for nucleotide data, and 45% for standard binary data)
are detected, a warning is given, suggesting to remove these sequences and to subsequently rea-
lign the dataset. MetaPIGA does not perform alignment, so you’ll have to realign your sequences
using an alignment software such as ClustalW or CodonCode Aligner.

✓ Automated trimming of poorly aligned regions using the trimAl algorithm [2]: excessively
gapped and/or divergent positions are put in a charset of excluded characters (but they can be
easily re-included in the ‘Dataset settings’, see section 5.3).

Each of these 4 tests is also separately accessible in the 'dataset' menu.
	
 The trimAl algorithm has not yet been implemented for codon sequences in the MetaPIGA
version 3.0.

Fig. 2: The MetaPIGA main window with three loaded datasets and the ‘ranoidea_1b’ dataset selected. The arrows
indicate the memory required for running that dataset (under the current settings), the central button for data quality
control & alignment trimming, and the second tab giving access to the compressed dataset, number of data patterns,
and base frequencies.

MetaPIGA 3.0 manual p12

3 Ambiguities are considered as such during comparisons of sequences. For example, in the dataset below, there are two
groups of identical sequences (seq.1+2+3 and seq.4+5). After running the test, MetaPIGA keeps, within each group,
only the sequences with the lowest number of ambiguities (sequences 1 and 4).

Sequence1 A G T G C C N G A!
Sequence2 A G Y G C C T R A!! ! Sequence1 A G T G C C N G A
Sequence3 A N T N C - T G A! --->! Sequence4 T T T G C C T - T
Sequence4 T T T G C C T - T
Sequence5 T - - G C C T A T

The icons in the upper-left cor-
ner of the window (Fig. 3) are
shortcuts to the main com-
mands from the ‘File’,
‘Search’, ‘Batch’, and ‘Tools’
menus. Most of these functions
are self-explanatory and are
associated with an interactive
‘mouse-over’ help system. We
will however discuss below the
major functionalities. Most
commands can be called using
a short-cut of type ‘Ctrl/Cmd+letter’ (e.g., ‘Ctrl/Cmd+L’ for opening a Nexus or Fasta file).

NOTE: COMMAND LINE LAUNCH. It is particularly useful to launch MetaPIGA in command line if you want to
send jobs to a distant server. You must use the ‘mp_console’ executable (and not ‘MetaPIGA’). Simply type the com-
mand “mp_console” with the following arguments:

✓ [noupdate] : MetaPIGA will not check the MetaPIGA download server for an update;
✓ [nogui] : MetaPIGA will run without graphical interface (but textual progress), executing all files given in argument.
✓ [width=] : set the console width (default = 80). Necessary for progress bar display without GUI.
✓ [silent] Launches MetaPIGA without any GUI or text progress.
✓ [aFilename] : The Nexus/Fasta file that will be opened by MetaPIGA and executed if [nogui] is set. If several file-

names are given, they will be run sequentially as a batch.
For example, to run sequentially two nexus files ‘file1.nex’ and ‘file2.nex’ withtout GUI under Windows, type:
“mp_console.exe noupdate nogui file1.nex file2.nex”
Refer to ‘Section 5.8’ on how building batch files manually, and to ‘Appendix 2’ for the full list of MetaPIGA com-
mands that can be incorporated in Nexus files.

5.3. [D] Dataset Settings
5.3.1 Overview
	
 The dataset settings are accessed by clicking on the button or by selecting in the menu:
‘Dataset’ ➙ ‘Dataset settings’. This window allows to:

✓ define and manage charsets;
✓ include/exclude taxa, characters, and charsets;
✓ define and manage dataset partitions;
✓ define outgroup sequences;
✓ define a range of Codons inside a nucleotide sequence.

This window is divided into two tabs. The first tab (Dataset) handles charsets, partitions, outgroups,
and excluded taxa. The second (Codons) allows defining Codon characters in nucleotide sequences.
	
 The corresponding window for the ‘ranoidea_1b.nex’ file is shown below (Fig. 4). The 7 out-
group taxa and the 10 charsets were predefined (hence, recognized by the program) in the nexus file
using a metaPIGA block as highlighted in green below. See Appendix 2 for the full list of
MetaPIGA commands.
#NEXUS
BEGIN DATA;
!DIMENSIONS NTAX=111 NCHAR=3679;
!FORMAT DATATYPE=DNA interleave MISSING=? GAP=- ;
MATRIX
The data matrix is here in interleaved format
;
END;
BEGIN METAPIGA;

Fig. 3: The MetaPIGA main functionalities icons. These functionalities
(and others) are also available through the ‘File’, ‘Dataset’, ‘Search’,
‘Batch’, and ‘Tools’ menus. Between brackets: shortcut command letters.

MetaPIGA 3.0 manual p13

charset name=RAG1 set{1-555};
charset name=rhod1 set{556-870};
charset name=rhod4 set{871-1045};
charset name=Tyr set{1046-1579};
charset name=12V16 set{1580-3080};
charset name=16S set{3081-3679};
charset name=RAG_AmbigAlign set{67-84};
charset name=Tyr_AmbigAlign set{1211-1228};
charset name=12V16_Ambigalign set{1610-1615 1671-1684 1721-1762 1784-1801 1817-1867
! 1892-1900 1911-1915 1953-1999 2048-2055 2070-2086 2107-2116 2128-2199 2208-2219
! 2237-2262 2287-2304 2308 2324-2332 2349-2352 2363-2370 2378-2390 2411 2431-2454
! 2567-2611 2673-2700 2722-2728 2742-2831 2864-2884 2900-2988 3022-3080};
charset name=16S_AmbigAlign set{3090-3103 3128-3136 3149-3158 3318-3398 3438-3507
! 3513-3527 3649-3679};
outgroup {1004NesTho 0986DenAur 1052HylAre 0987PhrVen 1006CerOrn 1082LepMel! 1037Telsp.};

end;

All commands can be performed with the GUI (instead of using commands in the Nexus file) as de-
scribed below.

5.3.2 The ‘Dataset’ tab
	
 Use the >> and << but-
tons to (i) transfer taxa in and
out of the outgroup, (ii)
exclude/include taxa, (iii)
consider/disregard pre-defined
charsets as partitions, and (iv)
include/exclude character sets
from the analysis. Character
sets (‘charsets’) can be defined
and managed using the inter-
face (see below). In Fig 4, one
taxon and four charsets were
excluded manually. The
‘Charset viewer’ button allows
selecting and visualizing any of
the charsets (highlighted in the
full dataset). Clicking on the
‘Define new charset’ button
opens a window for selecting characters to include in the new charset. Multiple selections can be
performed with the mouse (and shift/ctrl/cmd keys depending on your OS) or a range selection tool.

Fig. 5: The selection tool for defining new character sets. Select the characters to be included in the charset and click

Fig. 4: The ‘Dataset settings’ window.

MetaPIGA 3.0 manual p14

In the first example (Fig. 5), a set of 9+4+7 characters have first been selected with the mouse, then
added to the charset under construction by using the ‘Add selection’ button (red arrow in Fig. 5).
That button can be used multiple times to sequentially add different sets of characters to your new
charset. Once a selection has been added, its colour is changed to avoid any ambiguity. Once click-
ing the ‘SAVE’ button, you will have to supply a name (here, we used ‘MYCHARSET’) for the new
charset and it will appear in the list of available charsets (Fig. 7).
	
 Note that a charset can also be
selected using the range selection tool
as in this second example (Fig.6)
where nucleotides between position 1
and 300 have been selected every
three positions. This allows for exam-
ple to easily define 1st, 2nd, and 3d po-
sitions in a protein-coding sequence.
The mouse selection tool (Fig. 5) and
the range-selection tool (Fig. 6) can
be used in combination. If your data-
set is exclusively made of in-frame
protein-coding nucleotide sequences,
quick definition of first, second, and
third positions can be performed using
the ad-hoc ‘Define pos 1,2,3’ button in
the ‘Dataset settings’ (Fig. 4).
	
 Charsets can then be excluded/
included from the analysis or
considered/disregarded for data parti-
tioning. In the example in Fig. 7, we
have 7 taxa in the outgroup, 1 ex-
cluded taxon, 11 charsets of which 4
are excluded (in the present case,
these are ambiguously aligned posi-
tions for different genes, hence, it was
chosen to remove them from the
analysis), and 3 partitions: ‘16S’,
‘MY_CHARSET’, All other non-excluded
characters (automatically grouped into
a virtual charset named “REMAIN-
ING”)4.
	

Gaps. The user can choose to remove,
before the analysis is performed, ei-
ther all columns with at least one gap,
or at least one gap or one ‘N’ (‘A’ or
‘C’ or ‘G’ or ‘T’).

Fig. 6: Defining a character set with the range-selection tool.

Fig. 7: The ‘Dataset’ window after defining the new charset
(‘MY_CHARSET’) and partitioning of the data.

MetaPIGA 3.0 manual p15

4We assume that all partitions evolve on the same topology, but all other parameters (base freq, substitution matrix rates, shape pa-
rameter of γ-distr, and proportion of invariable sites Pinv) are estimated and optimized separately for each partition. Among-partition
rate variation parameters are introduced in the likelihood equation as a factor that modifies branch lengths for the corresponding par-
tition. Branch lengths are optimized as usual, but the relative rates of partitions are optimized separately (with the constraint that the
weighted average of among-partitions rates is 1; weighting is according to each partition’s size). See Appendix 3 for details.

5.3.3 The ‘Codons’ tab
	
 The codon tab consists of a codon range viewer and two buttons that are used for codon range
definition. Codons are indicated with black letters on a light green background. The remaining of
the dataset is colored inversely
(Fig. 8). Pressing the ‘Make
codons’ button will open the
codon maker window where
you can define (i) the range of
the coding sequence and (ii)
the genetic code you wish to
use (i.e., The Universal Code,
the Vertebrate Mitochondrial
Code, etc., see below). The
range of coding sequences can
be defined by manually picking
the first position in the dataset
and pressing the ‘Set as first po-
sition’ button in the ‘Pick posi-
tion’ tool in the upper left corner
of the window (Fig. 9, highlight
a). Similarly, pick the last posi-
tion in the dataset and press the
‘Set as last position’ button. Al-
ternatively, define the range by
entering the indexes of the first
and the last positions in the top
middle part of the window (Fig.
9, highlight b). Note that the
first and last positions must de-
fine a range corresponding to a
multiple of 3 nucleotides. If this
is not the case,, the codon maker will trim the range to the closest smaller third nucleotide position.
Also, note that if some of the codons are either stop codons or ambiguous codons, the codon maker
will exclude the corresponding codons and a warning will pop up. Important: The nucleotides out-
side of the defined range of codons will be ignored during subsequent analyses. If you have charsets
defined before the translation to the codons, these charset will be available only if they are compati-
ble with the codon range. These incompatible charsets will become available again as soon as you
revert to the nucleotide character mode (see below). If you are saving a codon range to a nexus file,
the incompatible charsets will not be saved.
The genetic codes (for codon translation) available in the drop-down menu (Fig. 9c) are:
✓ The Universal Code;
✓ The Ciliate, Dasycladacean and Hexamita Nuclear Code;
✓ The Echinoderm and Flatworm Mitochondrial Code;
✓ The Euplotid Nuclear Code;
✓ The Invertebrate Mitochondrial Code;

Fig. 8: The ‘Codons’ tab after defining the codon range within the
sequence. The Codon range is marked with the green background.

Fig. 9: The codon maker. Tools for defining codon range (a and b), the
drop-down menu for selecting a DNA code (c), and the range of
nucleotides selected as codons (d, in purple) are indicated.

MetaPIGA 3.0 manual p16

✓ the Mold, Protozoan, Coelenterate Mitochondrial & The Mycoplasma/Spiroplasma Code;
✓ The Vertebrate Mitochondrial Code.
For additional information on genetic codes, please check: http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi.

Once you have defined the codon range and the genetic code, press the ‘Save’ button and proceed to
defining your Analysis Settings (section 5.4 below).

Revert to nucleotides. To revert defined codons back into nucleotide characters, please press the
‘Revert to nucleotides’ button (Fig. 8). If some of your charsets became unavailable during codon
definitions, they will re-appear in the list of charsets.

5.3.4 Exiting the Settings Window
Once outgroup sequences, charsets, partitions, and excluded sequences and charsets have been de-
fined (and, potentially, the range of codons), and the ‘OK’ button has been hit, the main (entry)
window is updated (Fig. 10): the upper-right window lists the new settings and the lower-right win-
dow indicates the excluded characters and excluded taxa in red, and the various partitions using a
color-coded font background. Switching to another dataset in the left window and modifying the
settings for that dataset does not affect the settings associates to the other datasets.

Note: A dataset can be saved as a Nexus file with both excluded taxa and excluded charset deleted from the
DATA matrix. To do this, use the menu 'File > Save modified dataset to Nexus'.

Fig. 10: The MetaPIGA entry window updated after defining the settings.

MetaPIGA 3.0 manual p17

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

5.4. [A] Analysis Settings

The analysis settings are accessed by clicking on the button or by selecting in the menu:
‘Search’ ➙ ‘Analysis settings’. The Settings window includes 5 tabs to switch among the corre-
sponding parameter controls relevant to: ‘Heuristic’, ‘Evaluation Criterion’, ‘Starting tree(s)’,
‘Operators’, and ‘Miscellaneous’. The user can switch from on tab to another and confirm ALL
changes by clicking on the ‘OK’ button in ANY of the tabs.

Note that the analysis settings window always indicates in the lower left corner (blue frame in Fig. 11) the
amount of memory necessary for running the analysis given the settings so far selected. When the amount of
memory exceeds that allocated to MetaPIGA, the corresponding text turns red. To alleviate the problem, use
‘Tools’ ➙ ‘Memory Settings’ (Fig. 1) to increase the memory allocated to MetaPIGA.

5.4.1. The ‘Heuristic’ tab
We implemented four heuristics in MetaPIGA: a hill climbing algorithm, a Stochastic Simulated
Annealing algorithm (SSA; [26, 42]), a classical Genetic Algorithm (GA; [27-29]), and the meta-
population Genetic Algorithm based on the Consensus Pruning principle (metaGA; [1]), all avail-
able in the Heuristic tab (Fig. 11).

The Hill Climbing (HC) algorithms
The ‘Stochastic HC’ algorithm generates a new solution tree at each step (using available operators)
and accepts it only if its likelihood is better than the current solution. HC algorithms are fast but
tend to generate solutions trapped in local optima and are therefore highly dependent on the starting
tree localization in
tree space as well
as on the (un-
known) tree space
topography.
Hence, the user
can choose to per-
form ‘Random-
restart hill climb-
ing’ i.e., an algo-
rithm that itera-
tively performs N
hill climbings,
each time with a
different initial
tree. Among the N
solution trees,
only the best is
kept. The user can fix the number of restarts (20 by default).

Figure 11 also illustrates the ‘mouse-over’ help system of MetaPIGA: an explanatory note appears when mov-
ing the mouse cursor over the corresponding field, parameter, or radio-button, etc. In figure 11, the mouse cur-
sor is over the ‘Random-restart Hill Climbing’ radio button.

The Stochastic Simulated Annealing algorithm (SSA)
The SSA algorithm uses statistical mechanics principles to solve combinatorial optimization prob-
lems [42]; i.e., it mimics the process of minimal energy annealing in solids. The first attempt to use
this approach for the evolutionary tree problem was introduced in 1985 by Lundy [43], and its use
for ML phylogeny inference was further developed in 2001 by Salter and Pearl [26]. SSA starts
with an initial state (the starting tree) and randomly perturbs that solution (using available tree op-

Fig. 11: The ‘Heuristic’ window with the ‘Hill Climbing’ heuristic selected and the
corresponding mouse-over help text. The blue frame highlights the amount of memory
required for running the analysis given the settings so far selected.

MetaPIGA 3.0 manual p18

erators). If the new state is better (lower energy, better likelihood), it is kept as the new current
state; if the new state is worse (higher energy, worse likelihood), it is accepted as the current state
with the probability eΔE /T , where ∆E is the negative difference in energy (here, the difference of
likelihood) between the two states, and T is the so-called ‘temperature’ of the system. If T is low-
ered slowly enough, the algorithm is guaranteed to find the optimal solution, but if the temperature
is lowered too slowly, the time to find the optimal solution can exceed that of an exact search. The
obvious asset of the algorithm is its ability to momentarily accept suboptimal solutions, allowing it
to escape local optima whereas its obvious drawback is the difficulty to define the shape and speed
of the ‘cooling schedule’ (i.e., the rate of the decrease in T). Efficient schedules highly depend on
the dataset. The efficiency of the algorithm is unknown and optimization of its parameters has never
been performed. Before this optimization analysis (in progress) is finalized, the SSA is provided as
is for allowing users to explore its utility. The parameters available in MetaPIGA 3 for the SSA are
described in Appendix 2.

The Genetic Algorithm (GA)
The GA is an evolutionary computation approach that implements a set of operators mimicking
processes of biological evolution such as mutation, recombination, selection, and reproduction (e.g.,
[44]). After an initial step of generating a population of trees, the individuals (specific trees with
their model parameters) within that population are (i) subjected to mutation (a stochastic alteration
of topology, branch lengths or model parameters) and/or recombination, and (ii) allowed to repro-
duce with a probability that is a
function of their relative fitness
value (here, their likelihood).
Because selection preferen-
tially retains changes that im-
prove the likelihood, the mean
score of the population im-
proves across generations.
However, because sub-optimal
solutions can survive in the
population (with probabilities
that depend on the selection
scheme), the GA allows, in
principle, escaping local op-
tima. In MetaPIGA, we implemented 5 alternative selection schemes (Fig. 12, see [1]):	

✓ ‘Rank’: individuals are assigned a probability of leaving an offspring (i.e., a copy of themselves) as a function of

their position in a list in which they are ranked by their score. The probability for the ith individual of leaving an
offspring to the next generation is equal to:

 2
n(n +1)

(n − i +1)

✓ ‘Tournament’: two individuals are drawn randomly from the population of I individuals and one offspring is
produced from the individual with the higher score. Both trees are then placed back into the mating population
and the whole process is repeated until I offspring have been generated. This is the default selection scheme
when using the GA.

✓ ‘Replacement’: two individuals are drawn randomly from the population of I individuals and two copies of the
better individual are returned to the mating pool (parents are discarded). The process is repeated sI times, where s
is the selection strength. The offspring population is generated as a copy of the post-selection parent population.

✓ ‘Improve’: only those individuals that have improved (in comparison to their likelihood at the previous genera-
tion) are allowed to produce an offspring. Each individual that fails this test is discarded and replaced by a copy
of the current best individual.

✓ ‘Keep the Best’: only the best individual (i.e., with highest likelihood) is kept and all other individuals are re-
placed by a copy of the best individual.

Fig. 12: The ‘Heuristic’ window with ‘Genetic Algorithm’ selected.

MetaPIGA 3.0 manual p19

All selection regimes (except ‘Improve’ and ‘Keep the best’) tolerate the maintenance of poor trees
in the evolving populations, an effect which allows escaping from local optima but increases search
time (see below how the metaGA resolves that problem).
	
 We also implement one recombination scheme where each sub-optimal individual has a
probability (determined by the user) to recombine with a better individual. Recombination is per-
formed by exchanging subtrees defined by one (if any) of the identical taxa partitions in the two pa-
rental trees (i.e., one internal branch that defines subtrees including the same taxa but with poten-
tially different sub-topologies). A recombination can be viewed as a large number of simultaneous
topological mutations.
	
 Beside the selection scheme and the possibility to perform intra-population recombinations,
the major parameter in the GA is the population size (set by the user).

The metapopulation Genetic Algorithm (metaGA)
This approach relies on the coexistence of P interacting popu-
lations [1] of I individuals each (P and I defined by the user):
the populations are not fully independent as they cooperate in
the search for optimal solutions. Within each population, a
classical GA is performed: trees are subjected to mutation
events, evaluation, and selection (5 alternative selection
schemes are available as in the GA above). However, all topo-
logical operators are guided through inter-population compari-
sons defined and controlled by ‘Consensus Pruning’ (CP; [1]):
topological consensus among trees across populations defines
the probability with which different portions of each tree are
subjected to topological mutations (Fig. 13). These compari-
sons allow the dynamic differentiation between internal
branches that are likely correct (hence, that should be changed
with low probability) and those that are likely incorrect (hence,
that should be modified with high probability).
Although CP allows for many
alternative inter-population
communication procedures, we
implemented (Fig. 14) the two
that we identified as the most
useful:
✓ ‘Strict CP’: internal

branches shared by all trees
across all populations can-
not be affected by topologi-
cal mutations, all other in-
ternal branches are uncon-
strained.

✓ ‘Stochastic CP’ (default):
topological mutations affect-
ing a given branch are re-
jected with a probability
proportional to the percent-
age of trees across all popu-
lations that agree on that branch.

The default selection method for the MetaGA is ‘Improve’ (see above). This scheme greatly re-

a

b

c d

e f

g

h

i

j
k

l

mn
o

Prohibited
SPR

Allowed
SPR

Pro
hib

ite
d

TXS

Allowed TXS

Fig. 13: The principle of CP. Before
a tree is mutated, its topology is
compared with those of the best trees
from other populations; the
consensus branches (bold red) define
the partitions that can (green arrows)
and cannot (red arrows) be affected
by topological mutations; i.e., any
operation moving a taxon across a
consensus branch is prohibited.

Fig. 14: The ‘Heuristic’ window with the ‘metaPopulation Genetic
Algorithm’ selected.

MetaPIGA 3.0 manual p20

duces the intra-population variability after each selection step but local optima are avoided thanks
to ‘Consensus Pruning’. In other words, the metaGA resolves the major problem inherent to
classical Genetic Algorithms by maintaining high (inter-population) variation even under
strong (intra-population) selection.
	
 As constraining entirely an internal branch from being affected by topological mutations nec-
essarily increases the likelihood to be trapped in a local optimum, a tolerance parameter t (defined
to 5% by the user in Fig. 14) is implemented, allowing any internal branch to be affected with a
probability t even if the corresponding branch is shared by all trees. The user of MetaPIGA has the
choice between a ‘blind’ and a ‘supervised’ procedure for handling constrained partitions (Fig. 14).
In the former, a topological mutation that affects a constrained branch is simply aborted and the tree
is left unchanged, whereas in the latter, topological operators exclusively target branches in a pool
of acceptable (unconstrained) candidates. The ‘supervised’ procedure is used as default because
preliminary analyses suggest that it allows trees to converge faster to higher likelihoods.
	
 The MetaGA allows for two, non-mutually exclusive, recombination flavors: ‘intra-
population recombination’ (lower-left field in Fig. 15) where each sub-optimal individual at each
generation has a probability (instead of being mutated) to recombine with a better individual from
that population (as in the GA above), and ‘inter-population hybridization’ (lower-right field in Fig.
14) where, at each generation, there is a probability (defined by the user) that all sub-optimal indi-
viduals from one random population, instead of being mutated, are recombined with one individual
from another population; sub-optimal individuals from other populations experience the normal mu-
tation procedure.
	
 As CP provides frequencies of internal branches shared among trees across populations, it
also indicates if the populations converge towards a stable set of solutions, i.e., towards a consensus
with stable branch frequencies. Hence, CP provides a stopping rule not available to other heuristics:
the user can choose to stop the search when a series of successive mean relative error (MRE) values
remains below a threshold defined by the user. To increase independence among samples, MRE are
computed every n>1 (i.e., non-successive) generations. The user defines n, as well as for how many
samples the MRE must remain below the specified threshold before the search stops. See Section
5.4.5 (The ‘Miscellaneous’ tab) for details.

5.4.2. The ‘Evaluation criterion’ tab
Setting ML Models
This window allows defining substitution models and their parameters (Fig. 15). Trees are estimated
in MetaPIGA with the Maximum Likelihood criterion (ML) using one of 5 nucleotide substitution
models for DNA sequences, one of 11 amino-acid substitution models, or one of two codon mod-
els. The implemented nucleotide substitution models are ([3] and refs therein): ‘Jukes Cantor’
(JC), Kimura’s 2 parameters’ (K2P), ‘Hasegawa-Kishino-Yano 1985’ (HKY85), ‘Tamura-Nei
1993’ (TN93), and ‘General Time Reversible (GTR)’. The available amino-acid substitution mod-
els are: the ‘Poisson’ and ‘GTR20’ models (extensions of, respectively, the JC and GTR models to
the 20 by 20 substitution matrix of protein sequences), and 9 empirical models for mitochondrial,
chloroplastic, and nuclear Protein sequences: ‘MtMam’, ‘MtRev’, ‘RtRev’, ‘CpRev’, ‘BLOS-
SUM62’, ‘VT’, ‘Dayhoff’, ‘JTT’, and ‘WAG’. The implemented codon substitution models are GY
and ECM (Empirical Codon Model) [45, 46]. For the empirical protein and codon models, state
frequencies can be set to the empirical values used by the authors who designed the corresponding
model. Alternatively, state frequencies can be set to those observed in the dataset under analysis.
Analyses can be performed with Rate Heterogeneity among sites using either a discrete ‘Gamma
distribution of rates’ (γ-distr) [35, 36] or a ‘Proportion of Invariant Sites’ (Pinv) [37], or both (γ-
distr + Pinv). All parameters of the model (transition/transversion ratio or components of the rate
matrix, the shape parameter of the γ-distr, and Pinv) can be set by the user or estimated from a NJ
tree (using the ‘Estimate starting parameters’ button, blue frame, Fig. 15).

MetaPIGA 3.0 manual p21

Fig. 15: The ML model window for DNA (top panel) and Protein (middle panel) datasets. The purple arrow
indicates the drop-down menu for selecting the character set for which the settings are being defined: all charsets
must be analyzed with the same single model (K2P and WAG models are selected in the examples shown), but the
parameter values of the chosen model (e.g., the transition:transversion ratio for K2P or the estimated aa frequencies
for WAG) can be different for each partition. Lower panel: When using the GTR20 model (i.e., the general-time-
reversible model extended to the 20x20 aa substitution rate matrix), the 190 rate parameters can be optimized during
the search (i.e., if the RPM operator is selected), but the starting values can be set to the values of any of the
empirical models (WAG, JTT, ...) by selecting the model in the drop-down menu (red arrow 1), and hitting the ‘Fill
R matrix’ button (red arrow 2).

MetaPIGA 3.0 manual p22

Note: for nucleotide substitution models, the ‘transition-transversion ratio’ (Ti/Tv) is the parameter called
kappa, i.e., the ratio between the rate of Ti and the rate of Tv. Because there are twice as many possible trans-
versions (A↔T; A↔C; G↔T; G↔C) as possible transitions (A↔G; T↔C), the kappa parameter does not
equate to the ratio ‘frequency of Ti / frequency of Tv’. For example, under the JC model, kappa=1 but ‘FreqTi/
freqTv’= 0.5. For the codon substitution models kappa = ‘freqTi/freqTv’.
Note: Model parameter values can be estimated from the NJ tree using the ‘Estimate starting parameters’ but-
ton (blue frame, Fig. 15). However, if you stop the estimation before it completes, parameter values will not be
re-set to the original values but to the values obtained by the optimization algorithm right before it was
stopped.

Automated choice of best Model (LRT, AIC, BIC)
One difficulty in ML phylogeny inference is to choose the “right” substitution model: too-simple a
model will fit the data poorly and can lead to erroneous inference, whereas too-complex a model
will run more slowly and over-fit the data (i.e., too many parameters in relation to the data will gen-
erate an increased variance for all parameters ... the model will describe noise in addition to the
data). The softwares MODELTEST and PROTTEST (http://darwin.uvigo.es) implement statistical
methods for selecting the model that best fits the data ([41]; and refs therein). MetaPIGA makes the
procedure easier as it implements the Likelihood Ratio Test, the Akaike Information Criterion, and
the Bayesian Information Criterion and performs parameter optimization automatically: simply
choose your preferred model testing method (red frames in Fig. 15). For example, running the
Akaike Information Criterion test on the ‘ranoidea_1b.nex’ file will generate the results shown in
Figure 16: MetaPIGA proposes to use the GTR model with gamma-rate heterogeneity but no pro-
portion of invariant sites. Accepting this proposition will set this model in MetaPIGA as well as the
starting parameter values (here, rate parameters and gamma distribution shape parameter) to those
evaluated during the test. As the various models are tested in parallel on all the CPU cores of your
machine, MetaPIGA will warn you if not enough memory is available, a problem that can easily be
alleviated by reducing the number of cores allocated to the task (blue oval in Fig. 16).

Fig. 16: Running the Model Testing (here, with the AIC criterion).

MetaPIGA 3.0 manual p23

http://darwin.uvigo.es/software/modeltest.html
http://darwin.uvigo.es/software/modeltest.html

Note: that partitions (defined in the ‘Dataset Settings’ window, Figs. 4-10) are taken into account when per-
forming a ‘Model Test’. Given that model testing can take several hours to run on large datasets (especially
with protein data, given the number of models to compare), MetaPIGA allows you to restrict model testing
(Fig. 16) to the comparison of a subset of models.

Note: if you want to abort model testing (e.g., because you forgot to include/exclude taxa and/or charsets, or
want to change your partitioning of the data), hit the ‘CANCEL TESTING’ button: testing will be aborted and
all optimizations performed so far will be ignored. On the other hand, hitting a ‘CANCEL CURRENT’ button
will stop optimization on the model being currently evaluated; obviously, the results of the statistical tests will
then be contestable.

Intra-step optimization
All parameters of the model (transition/transversion ratio or components of the rate matrix, the
shape parameter of the γ-distr, and Pinv), branch lengths, and among-partition relative rates can
experience ‘Intra-step optimization’ (blue frame in Fig. 15) either periodically during the search
and/or at the end of the search. The principle of stochastic methods (i.e., inter-step optimization
methods), such as MC3 approximations of the Bayesian approach, stochastic simulated annealing,
and genetic algorithms, is to AVOID intra-step optimization. Hence, the default in MetaPIGA is that
all target parameters (chosen by the user) are NOT optimized intra-step (only the consensus tree
obtained after replicated searches -- see section 5.4.5 -- will have it’s model parameters optimized).
Hence, the stochastic heuristic itself will optimize topology, branch lengths and other model pa-
rameters during each search. When using the 'discrete' or 'stochastic' options (blue frame, Fig. 15),
current best tree(s) are also optimized during the search, respectively every s numbers of steps or
with a probability p at each step. These two options can obviously greatly increase running time.

Note: For intra-step optimization, MetaPIGA implements a single algorithm: a genetic algorithm without re-
combination; each tree to optimize is copied 7 times and the population of 8 individuals experiences mutations
(on selected targets); selection is performed with tournament; the GA is stops when the likelihood remains un-
changed for 200 steps (generations). Future versions of MetaPIGA will also include alternatives to the GA
(such as, possibly, the Powell’s algorithm).

Note: the ‘consensus tree only’ option (blue frame, Fig. 15) is equivalent to the “never” option when perform-
ing a single search (one replicate). The two options differ only when preforming multiple replicates (see sec-
tion 5.4.5 below). When target parameters are optimized every s steps or stochastically, optimization is also
performed at the end of (each) search.

5.4.3. The ‘Starting tree(s)’ tab
As shown in Figure 17, the user can choose to produce the starting tree(s) either as NJ Tree(s) [47]
or as Random Tree(s) (i.e., with random topology and random branch lengths) or as ‘Loose Neigh-
bor Joining’ (LNJ) tree(s), i.e., a pseudo-random topology (modified from [1]). For generating a
LNJ tree, the user specifies a proportion value (p=[0-1]) and, at each step of the NJ algorithm, the
two nodes to cluster, instead of corresponding to the smallest distance value, are randomly chosen

from a list containing the NTax(Ntax −1)p
2

 smaller distances, where NTax is the number of se-

quences in the dataset. Branch lengths are computed as in the NJ method. In other words, the LNJ
tree is a NJ tree with some topology randomization which amount is defined by the user. This
approach is a particularly useful compromise between random starting trees (p=1) that require long
runs of the heuristic for optimization, and a good but fixed topology (the NJ tree, i.e., p=0) that
might be prone to generate solutions around a local optimum. The LNJ starting tree method is par-
ticularly well adapted to the metaGA. Indeed, starting from I*P (where I is the number of individu-
als (trees) per population and P is the number of populations) random trees will significantly in-
crease the search time whereas starting from I*P identical NJ trees will cause the stopping rule to be

MetaPIGA 3.0 manual p24

reached too fast (see below) with local optima solutions. On the other hand, LNJ starting trees
provide enough variation among populations for avoiding local optima but significantly
speed-up the search in comparison with using ‘True random’ starting trees.

Fig. 17: The ‘Starting tree(s)’ window.

Note: The distance matrix used for building NJ or LNJ starting trees can be computed using any of the available substitution
models (see above) and with or without Pinv and/or γ-distr. Unless the user wants to start with trees with the highest likelihood
possible, we recommend using a simple and fast model (e.g., JC and Poisson respectively for nucleotide and protein data) for
generating starting trees as they will anyway be highly modified during the heuristic search. For codon substitution models, three
distance matrices are calculated (for codon positions 1, 2, and 3) using one of the available nucleotide substitution models. These
three matrices are then weighted based on the evolutionary information they provide and combined into the single distance ma-
trix [48].
Note: When choosing the ‘Neighbor Joining’ starting-tree option during a ‘Random-restart hill climbing’ search (Heuristic tab,
section 5.4.1), the NJ tree will only be used for the first hill climbing, and ‘LNJ trees’ will be generated for all restarts.
Note: Arbitrary starting trees (in Newick format) can also be imported by the user. When clicking on the ‘User tree(s)’ radio
button then on the ‘select’ button (Fig.17), you will prompted to choose starting trees from a list. Various buttons allow you to
add more trees in that list either from the ‘TreeViewer’ or from Nexus files.
Notes: if the Nexus file contains user trees (in a Tree Block) and if you select the ‘User tree(s)’ starting-tree option:
✓ The first tree in the Tree Block will be used if you selected SA or stochastic HC as the heuristic;
✓ The I first trees in the Tree Block will be used when selecting GA as the heuristic option with I individuals (one tree per indi-

vidual);
✓ The P first trees in the Tree block will be used when selecting CP as the heuristic with P populations (one tree per popula-

tion);
✓ If there are too few trees in the list of starting trees, MetaPIGA will cycle among the available trees;
✓ In the case of a ‘Random-restart hill climbing’ search (‘Heuristic’ tab, section 5.4.1), if the number of provided starting trees

is smaller than N+1 (i.e., the number of restarts plus 1), LNJ trees will be generated for the missing starting trees.

5.4.4. The ‘Operators’ tab
All stochastic heuristics use Operators, i.e., the topology and parameters’ modifiers allowing the
heuristic to explore solution space. In MetaPIGA, we implemented 5 operators for perturbing tree
topology and 6 operators for perturbing model parameters (see below). These operators can be used
in any combination, either at equal or user-defined frequencies. The user can choose for these fre-
quencies to change dynamically during the search, i.e., MetaPIGA can periodically evaluate the
relative gains in likelihood produced by each operator and adjust their frequencies proportionally5.

MetaPIGA 3.0 manual p25

5 If only some of the operators are made dynamic, their probabilities are assigned after subtracting from 1 the probabili-
ties of the fixed operators. A minimum operator frequency can be set to prevent operators from being switched off. In-
deed, an operator which is very inefficient early in the search could become efficient later in the search.

In the example given in figure 18,
the evaluation of the operators’ per-
formances is computed every 100
generations, and the minimum fre-
quency of any selected operator is
set to 4%.
	
 ‘Nearest Neighbor Inter-
change’ (NNI), ‘Subtree Pruning
Regrafting’ (SPR), and ‘Tree Bisec-
tion Reconnection’ (TBR) are classi-
cal branch-swapping algorithms
used in many heuristics for phy-
logeny inference [21]. MetaPIGA
also implements the following to-
pology operators:
✓ ‘Taxa Swap’ (TXS): n randomly-

selected terminal branches are
randomly swapped. The value of n can be set to any number between 2 (default) and the total
number of taxa (ALL), or randomly chosen (RAND) at each generation.

✓ ‘Subtree Swap’ (STS): 2 (default) or a random number (RAND) of subtrees are randomly
swapped.

The 6 other operators affect model parameters:
✓ ‘Branch Length Mutation’ (BLM) and ‘internal Branch length mutation’ (BLMint). As our pre-

liminary analyses (data not shown) indicated that branch length optimization yields external
branch lengths that are quite similar to those obtained through topology-constrained NJ (both on
a NJ topology and on a ML topology), we implemented a branch-length operator (BLMint) af-
fecting internal branches only. We also implemented a branch-length operator (BLM) that can
affect all (internal and external) branches.

✓ ‘Rate Parameters Mutation’ (RPM): This operator is not available for the JC model as the rate
parameter is identical for all possible substitutions under this model. The K2P and HKY models
consider two rates (the rate of Ti, and the rate of Tv); hence, only the kappa parameter (ratio of
Ti and Tv rates) can be affected. The TN93 model assigns 3 different rates: for transversions, for
A↔G transitions, and for T↔C transitions. The GTR model allows assigning different rates for
the 6 possible substitutions: A↔T, A↔C, G↔T, G↔C, A↔G, and T↔C. Under the TN93 and
GTR models, the user can choose that each RPM operation affects either ‘1’ (default) randomly
chosen rate parameter or ‘ALL’ rate parameters. The ‘1’ and ‘ALL’ commands are equivalent un-
der the K2P and HKY models because, although there are two rates, there is only one free rate
parameter (the other one is set to 1).

✓ ‘Gamma Distribution Mutation’ (GDM): modifies the γ-distr shape parameter.
✓ ‘Proportion of Invariable sites Mutation’ (PIM): affects Pinv.
✓ Among-Partitions Rate Mutation’ (APRM): affects the relative rates among partitions.

Notes:
• The BLM, BLMint, RPM, and GDM operators affect their corresponding parameter by multiplying the pa-

rameter’s value of the previous generation by a random number drawn from an exponential distribution (with
λ=2), and shifted by 0.5 (such that the minimum value is 0.5 and the mean is 1).

• The PIM (values between 0 and 1) and APRM operators affect their corresponding parameters by multiplying
the parameter’s value of the previous generation by a random number drawn from a normal distribution (with
mean=1 and SD= 0.5). The resulting multiplier is rejected if ≤ 0.4.

• For LNJ starting trees, the initial length of all internal branches is computed with the NJ algorithm whereas,

Fig. 18: The ‘Operators’ tab.

MetaPIGA 3.0 manual p26

for random starting trees, they are drawn from an exponential distribution (with λ=1), and shifted by 0.001 (to
avoid zero length branches).

5.4.5. The ‘Miscellaneous’ tab
This window allows the user to choose stop criteria and define the parameters of replicated searches
(to obtain estimates of branches’ posterior probabilities). In addition, the user can choose which log
files to save on disk. Also, if a supported graphics card is available, the user can choose to use either
the CPU or the GPU for likelihood computation. Increase of computation speed is particularly sig-
nificant for protein and codon models.

Fig. 19: The ‘Miscellaneous’ window for defining stopping condition(s), parameters for performing replicates (and
obtaining estimates of posterior probabilities under the MetaGA), and the label of the directory in which all results
will be saved. Log files to be saved on disk can also be defined. The amount of memory required for running the
analysis (blue frame) has significantly increased because a complex model is used (Fig. 14) and because 4 cores
have been chosen for parallelization (red frame).

Stop Criteria
Exactly as in the MC3 approximations of the Bayesian approach [24, 25] implemented in the soft-
ware MrBayes [31] for which the user must define a number of generations and trees to sample be-
fore stopping the search, all stochastic heuristics implemented in MetaPIGA require a stop condi-
tion. We implemented several stop conditions in MetaPIGA; any number of conditions can be set
and each one can be necessary or sufficient (Fig. 19, ‘nec.’ or ‘suf.’)6. The stop criteria are: number
of steps e.g., number of generations for the GA or the metaGA), elapsed time, and likelihood stabil-
ity. The later, termed ‘Automatic’ in the GUI (Fig. 19), means that the search stops when the log-
likelihood of the best tree has not improved of more than a given percentage (defined by the user,

MetaPIGA 3.0 manual p27

6 The heuristic stops when any of the sufficient conditions is met or when all necessary conditions are met. Conditions
are sufficient by default.

0.05% by default) at any step during n steps (n also defined by the user).
Note: that, when using the ‘Random-restart hill climbing’ heuristic (Fig. 11), the stop conditions are defined
for one hill climbing. For example, when using random-restart hill climbing with 10 restarts and ‘2000 steps’
as the stop condition, 11 hill climbing of 2000 steps will be performed but only the best scored tree, among the
11 results, will be kept.

When using the metaGA heuristic, one can use the Consensus’ stopping condition based on con-
vergence of the populations of solutions. Indeed, comparing (across generations) the frequencies of
internal branches shared among the P*I trees provides a means for assessing whether the popula-
tions converge towards a stable set of solutions, i.e., towards a consensus with stable branch fre-
quencies. Hence, a stopping rule, not available to other heuristics, can be used under Consensus
Pruning (=MetaGA): the user can choose to stop the search when a series of mean relative error
(MRE) values remains, across generations, below a threshold (in %) defined by the user. In our ex-
perience, using the Consensus stopping-rule with a threshold of 5% works very well when perform-
ing replicates (for estimating posterior probabilities of clades, see below). On the other hand, if you
perform a single search in order to find the single very best tree, you might want to experiment with
either lower threshold values (e.g., 1%) or the stopping rule based on stability of the likelihood
value (e.g., 200 steps without improvement of 0.01% of the log-likelihood value).

Note: To increase independence among samples, consensus trees are sampled every n>1 (i.e., non-successive)
generations. For example, given two consensus tree, Ti and Tj, corresponding to the consensus among the P*I
trees at generations 5000 and 5005, respectively, the MRE is computed as follows:

MRE(Ti ,Tj) =

ΦTi

p − ΦTj

p

max(ΦTi

p ,ΦTj

p)p=1

nPartition

∑
nPartition

, where nPartition is the sum of taxa bi-partitions observed in Ti and Tj

(but identical partitions are counted once), and ΦTi

p and ΦTj

p are the consensus values of bi-partition p in trees Ti

and Tj, respectively. Note that
ΦTi

p − ΦTj

p

max(ΦTi

p ,ΦTj

p)
= 1 if either both ΦTi

p and ΦTj

p are nil, or if the corresponding

internal branch does not exist in either Ti or Tj. Internal branches that are absent from both Ti and Tj are not
considered. If the MRE(gen5000,gen5005) is above the user-defined threshold (e.g., 3%), it is discarded and a new
MRE is computed for the comparison of generations 5005 and 5010. On the other hand, if MRE(gen5000,gen5005) is
below the threshold, a counter is incremented and a new MRE is computed for the comparison of generations
5000 with the next sample (here, corresponding to generation 5010). The user defines for how many samples
the MRE must remain below the specified threshold before the search stops.

	

Replicates
This functionality is very important because it allows estimating the support of trees and
clades. For all stochastic heuristics implemented in MetaPIGA, the user can chose to repeat the
search many times, generating a majority-rule consensus tree among the replicates. This is particu-
larly useful under the metaGA because previous analyses [1] indicate that a set of multiple
metaGA searches produces trees and clades with frequencies that approximate their posterior
probabilities. Hence, metaGA branch support values would be comparable to posterior probabili-
ties provided by MC3 approximations of Bayesian approaches. The user can either fix the number of
replicates, or specify a range of minimum and maximum number of replicates then choose to let
MetaPIGA stop automatically, exploiting the MRE metric in a similar way as the consensus across
populations in a single metaGA search (see above).

Note: Here, however, the MRE is computed using consensuses across replicates, i.e., Ti is the consensus
among the final trees obtained between replicates 1 and i. No additional replicate is produced when the MRE
among N replicates remains below a given threshold. Consecutive replicates can be used because they are in-
dependent. As an example, if N is set to 10, and the first MRE below the user-defined threshold (e.g., 5%) in-

MetaPIGA 3.0 manual p28

volves replicates 1-241 and 1-242, the MRE is computed 9 additional times, i.e., between the reference con-
sensus T1-241 and Tj, for j corresponding to replicates 1-243, then 1-244, then 1-245, etc. The search stops if the
inter-replicates MRE remains below 5% for 10 consecutive replicates. On the other hand, the counter is reset to
zero as soon as the MRE exceeds 5%, and the new reference tree for computing the MRE is then set to T1-current

replicate. The inter-generations (=intra-replicate) MRE stopping rule can be used in combination with the inter-
replicate MRE stopping rule, letting MetaPIGA decide both when to stop each replicate and when to stop exe-
cuting additional replicates (i.e., when to stop the entire analysis).

Note: in most cases, performing multiple replicates is aimed at generating a consensus tree and estimating
support of internal branches, hence, it is usually not important to perform a final intra-step optimization of all
model parameters at the end of each replicate. This is why the default for ‘Intra-step optimization’ (blue
frames, Fig. 15) is ‘consensus tree only’. It means that a final round of optimization for branch lengths and
model parameters is NOT performed after each replicate (this will significantly save run time and will not
change anything to the internal branches’ frequencies) but it is performed on the final consensus tree (i.e.,
model parameters and branch lengths are optimized on the consensus-tree topology). When the user chooses to
optimize best trees ‘at the end of (each) search’ the consensus tree is optimized as well. With the 'discrete' and
'stochastic' options, current best tree(s) are also optimized multiple times during each replicate as well as at the
end of each search.

The grid
To start an analysis on an XtremWeb-CH Grid, check the ‘Activate GRID’ check-box and write
your grid credentials in the appropriate boxes. If your account is active and the MetaPIGA binaries
are uploaded to the MetaPIGA module, your analysis will start on the Grid after you press the ‘Run’
button. For user documentation, please refer to the following site:
www.xtremwebch.net/mediawiki/index.php/How_use. Please, contact us for additional information.

Log files
The user can choose to write log files on disk. This is however mostly for debugging purposes and
performance testing such that only expert users might need this functionality. Selecting the log files
indicated with asterisks can (i) significantly slow down the search and (ii) fill up large amount of
disk space (with the magnitude of slow-down and fill-up approximately indicated by the number of
asterisks). All log files are written in the results folder (see below).
✓ Dataset - Working matrix log file - Prints the compressed dataset into 'Dataset.log'. The last row contains the

weight of each column, i.e., the number of times this data pattern is found in the data matrix.
✓ Distances – Distance matrix log file - Prints the distance matrix into 'Distances.log'.
✓ Starting trees – Starting Trees log file - Prints the starting tree(s) into 'StartingTrees.tre'.
✓ Consensus (**) – Consensus log file - The ‘Consensus.log' file records consensuses at each step of Consensus

Pruning. It requires disk space between 100 bytes and 1Kb per taxa and per consensus recorded. For example,
recording consensuses for a dataset of 200 taxa, using the metaGA heuristic for a fixed number of 5000 genera-
tions will generate a file between 100Mb and 1Gb for each replicate produced.

✓ Heuristic details (*) – Heuristic search log file - The 'Heuristic.log' file records details about each step of the
heuristic. Requires disk space between 500 bytes & 1 Kb per iteration of the heuristic.

✓ Heuristic trees (**) – Heuristic search tree file - The 'Heuristic.tre' file records each tree found at each step of the
heuristic. It requires disk space of +/- 130 bytes per taxa per tree recorded. For example, recording trees for a
dataset of 200 taxa, using the metaGA heuristic with 4 populations of 4 individuals each, for a fixed amount of
5000 generations will generate a file of about 1.5Gb for each replicate produced.

✓ Operator statistics – Operator statistics file – The ‘OperatorsStatistics.log’ file records operator statistics at the
end of a search, as well as each time the operator frequencies have been updated.

✓ Operator details (***) - Operators log file - The 'OperatorsDetails.log' file records details about the operators
used. It requires disk space of 200-300 bytes per taxa per operation. For example, recording operator details for a
dataset of 200 taxa, using the metaGA heuristic with 4 populations of 4 individuals each, for a fixed number of
5000 generations will generate a file between 1.7Gb and 3.4Gb for each replicate produced.

✓ Ancestral sequences - Ancestral sequences log file - At the end of the heuristic, the ancestral sequence probabili-
ties are printed into the 'AncestralSequences.log' file

MetaPIGA 3.0 manual p29

http://www.xtremwebch.net/mediawiki/index.php/How_use
http://www.xtremwebch.net/mediawiki/index.php/How_use

✓ Performances (*) – The ‘Performances.log’ file records the amount of time (in nanoseconds) used by each op-
erator. It requires disk space of +/- 1 Kb per iteration of the heuristic.

Output label and directory
Viewing of the analyses results can be done in the MetaPIGA graphical interface. However, all re-
sults are also written on disk for later retrieval, viewing and manipulation. When a MetaPIGA
search is started, a result directory (named ‘MetaPIGA results’) is generated in your home directory
(Mac OS X & Linux) or in the ‘My documents’ folder (Windows). When you launch an analysis,
the results will be automatically saved in a folder named with its ‘label’ (which is, by default, the
name of the nexus file minus the “nex” extension, see Fig. 19) followed by the date (year-month-
day) followed by the time (hour_min_sec) at which the search was started. This allows for easy dif-
ferentiation of analyses performed at different times on the same dataset. For example, the result
folder “ranoidea_1b - 2010-06-09 - 17_16_16” includes the result files for the analysis of the
“ranoidea_1b.nex” data set started on June 9, 2010 at 5:16:16PM.
At the end of the search, the result folder contains the file Results.nex, i.e., a text file including:
➡ A MetaPIGA block corresponding to the search parameters;
➡ The data set;
➡ A tree block with the result trees, i.e.:

✴ Either (if replicates have not been performed):
• The best tree found (among all P*I trees) named appropriately (e.g., ‘TREE

rana_~_2010~06~09_~_17_16_16_~_Genetic_algorithm_best_solution’)
• The best tree, of each of the P populations, named appropriately (e.g., ‘TREE

rana_~_2010~06~09_~_17_16_16_~_Best_individual_of_population_0’)
✴ Or (if replicates have been performed):

• The consensus tree (among all replicates) named appropriately (e.g., ‘TREE
rana_~_2010~06~09_~_17_16_16_~_Consensus_tree_~_200_replicates’)

• Then, for each replicate:
- The best tree found (among all P*I trees) named appropriately (e.g., TREE

rana_~_2010~06~09_~_17_16_16_~_Genetic_algorithm_best_solution_[Rep_8]
- The best tree, of each of the P populations, named appropriately (e.g., ‘TREE

rana_~_2010~06~09_~_17_16_16_~_Best_individual_of_population_0_[Rep_8]’)

If replicates have been performed, the result folder will also contain a text file ‘ConsensusTree.tre’
with the consensus tree among replicates. That tree is automatically updated in the run directory
after each replicate. Hence, if a crash or power cut occurs, the latest consensus tree (summariz-
ing all replicates that accumulated before the cut) can be loaded and visualized in MetaPIGA
after restarting. As the name of the tree includes the number of replicates, you will know when the
cut occurred.
	
 As the consensus tree file is in Newick format, it can also be loaded in tree viewing softwares
such as FigTree (http://tree.bio.ed.ac.uk/software/figtree/) or TreeView
(http://taxonomy.zoology.gla.ac.uk/rod/treeview.html).
If log files have been requested (see above), they will be printed either in the results folder or in cor-
responding replicates subfolders.

5.4.6. Exiting the Settings Window
Once all settings have been chosen by the user for the ‘Heuristic’, ‘Evaluation Criterion’, ‘Starting
Tree(s)’, ‘Operators’, and ‘Miscellaneous’ tabs and the OK button has been hit, the Settings win-
dow closes and the main (entry) window is updated with the new settings listed in the upper-right
window. The user can go back to the setting window at anytime for changing any parameter.
Switching to another dataset in the left window and modifying the settings for that dataset does not
affect the settings associates to the other datasets.

MetaPIGA 3.0 manual p30

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html

5.5. [R] The Run window

	

The search is launched by clicking on the
‘[R] Run heuristic search’ button (or by selecting in the menu: ‘Search’ ➙ ‘Run’). Once the
starting trees have been generated (this can take time), the user can follow the ongoing search by
looking at the lower left panel of the run window which displays graphical information specific to
the chosen heuristic method. For example, figure 20 shows the running window for a MetaGA
search with replicates, 4 populations, and stopping rules as indicated in figure 19. The lower-left
panel indicates the likelihood progression of each of the populations (the best tree likelihood in each
population is indicated) as well as which replicate is ongoing (rep 71). If you set replicates paralle-
lization to >1 (see red frame in Fig. 19), tabs give access to the graphs corresponding to each CPU
core (core number 2 is selected in Fig. 20; red arrow).
	
 When using the Stochastic Hill Climbing (HC) or the simple Genetic Algorithm (GA), the
lower-left panel displays the likelihood progression of either the current tree (for stochastic HC) or
of the best tree in the single population of trees (for the GA). When using the SSA, it indicates the
progression of both the ‘temperature’ and of the likelihood. During a random-restart Hill Climbing,
the graphical interface indicates the likelihood of the overall best solution (green line), the best so-
lution of the current restart (yellow curve), and the starting tree of each restart (red line). Magenta
and blue vertical lines indicate new restarts and replicates, respectively.

Fig. 20: The run window when replicates have been requested under the MetaGA heuristic. The best tree likelihood
in each population is indicated

MetaPIGA 3.0 manual p31

	
 In parallel with the likelihood progression displayed in the lower-left panel, the right panel
displays information on the current inferred phylogeny. When performing a single search (i.e.,
without replicates) the tree displayed is the current best tree. When performing replicates (as in Fig.
20), the right panel shows the current consensus tree (and corresponding frequencies of internal
branches) among all replicates accumulated thus far. Hence, the right panel of the run window al-
lows the user to observe, on the fly, the progression of the phylogeny inference or (when using the
metaGA) the progression of posterior probabilities of branches. In both cases, the user can switch
between phylogram and cladogram (blue arrow in Fig. 20). The current values of the inter-
generations (=intra-replicate) MRE and inter-replicate MRE (see ‘stopping rules’ above) are also
indicated (red frames in Fig. 20).
	
 Once the search is completed, a window will pop up reminding you that all results (best trees
and consensus tree) have been saved in your result folder, but will also propose you to send ‘All
best trees’ or the ‘Consensus tree only’ to the ‘Tree Viewer’ (see section 5.6 below) for further ma-
nipulations (rerooting, exporting, changing substitution model and further optimizing model pa-
rameters, reconstruction of ancestral states, etc).
	
 When using the XtremWeb-CH Grid, the run window shows the status of the workers:
queued, waiting, processing, completed, killed, or in error (see Fig. 21 for details). Workers with the
status ‘complete’ have already sent their results back to your local machine. To use the XtremWeb
Grid, please, refer to the following web site:
http://www.xtremwebch.net/mediawiki/index.php/How_use

Fig. 21: The ‘Run’ window when using a XWCH grid. Status of worker are color-coded. A white box indicates that
the replicate is waiting to be submitted to the grid whereas a gray box means that the replicate is waiting for an
available worker. A blue box indicates that the worker is selected will start the analysis. A yellow box indicates that
the replicate is running. A green box indicates that the replicate is completed and successfully retrieved from the
grid. Finally, a red box means that MetaPIGA cannot retrieve the result or that the worker is not responding (error
replicates are not used and have no effect on your analysis). Replicates stopped by the user are indicated with a
black box (‘killed’).

MetaPIGA 3.0 manual p32

http://www.xtremwebch.net/mediawiki/index.php/How_use
http://www.xtremwebch.net/mediawiki/index.php/How_use

5.6. [T] The tree viewer

5.6.1. Viewing and evaluating trees
The Tree Viewer is opened by clicking on the
‘[T] Tree viewer’ button (or by selecting in the menu: ‘Tools’ ➙ ‘Tree viewer’). Trees can be
saved in the ‘Tree viewer’ either at the end of a search or by importing trees from files. The user can
even type (or copy-paste) a tree in Newick format in the lower left panel (red frame in Fig. 22), give
it a name and add it to the TreeViewer’s list of trees. The Tree viewer allows to display, rename, or
remove any of these trees at any time. The ‘Clear list’ button delete all trees from the Tree viewer.
Buttons at the bottom of the right panel allow to display the selected tree in various styles (rectan-
gular, triangular, circular, phylogram), and show/hide its nodes’ numbers or its branch lengths.
Other buttons allow rerooting a tree at any node, and save or print one or several selected tree(s).
The upper right panel indicates the parameters of the model (for each partition, if any) and the cor-
responding likelihood (yellow oval; Fig.22) of the selected tree. Obviously, for computing a likeli-
hood, every tree must be associated to a dataset, hence, the ‘Tree Viewer’ only lists the trees that are
relevant to the active dataset. The latter can be selected either in the ‘Current dataset’ scroll down
list (Fig. 23) or in the MetaPIGA main window (Fig. 2 and 10). This allows the user to easily man-
age trees generated with different datasets.

Note: Several trees can be simultaneously selected from the list by using ‘command click’ and/or ‘shift-click’.
This allows removing several trees simultaneously. On the other hand, all other commands (model change,
printing, rooting, ancestral state reconstruction, etc.) will affect only the tree highest in the list of selected trees.

Fig. 22: The MetaPIGA tree viewer with one tree selected in the list. Red arrow: the ‘Model’ button gives access to a
window (Fig. 23) for optimization of parameters and/or branch lengths and re-computation of the corresponding
Likelihood under any substitution model. Green arrow: button giving access to the ancestral state reconstruction
panel (Fig. 24).

MetaPIGA 3.0 manual p33

	
 Clicking on the ‘Model’ button in the ‘Tree-
Viewer’ (red arrow; Fig. 22), opens the ‘Evaluation
settings’ window (Fig. 23) that allows (for the se-
lected tree) to (re-)optimize model parameters and/
or branch lengths and re-compute the correspond-
ing likelihood under any settings of model parame-
ters. Note that, although parameters can be manu-
ally set for each partition separately by using the
vertical tabs (Fig. 23), clicking on the ‘Optimize
model parameters’ or ‘Optimize branch lengths’
button will perform joint optimization for all parti-
tions. Once the model setting have been confirmed
by clicking the ‘OK’ button, the upper-right panel
of the ‘TreeViewer’ (Fig. 22), and the tree itself,
will be updated with the new parameter values.

5.6.2. Ancestral states reconstruction
During phylogeny inference under ML, the probabilities of all possible character states at all nodes
are computed for all characters. This provides means for reconstructing ancestral sequences both in
silico and in the laboratory (e.g., [10-14]). Clicking on the button indicated with a green arrow in
Fig. 22 gives access to the ancestral state reconstruction panel of the ‘TreeViewer’. Simply select an
internal node on the tree for viewing its corresponding ancestral sequence. Various buttons allow for
different display styles and for exporting the ancestral sequence(s) (and the corresponding statistics)
either of the selected node or of all internal nodes of the tree. The ancestral sequence reconstruction
we implemented is Empirical Bayes [49].

Fig. 24: The ancestral state reconstruction panel displays the conditional likelihood proportions of
each state at each site for the node 6, directly selected on the tree in the upper-right panel. The and

 buttons allow exporting to disk a text file with the ancestral states of the selected node or of all
nodes, respectively. Use the and buttons to switch between a view where bars of the
histogram, for each character, are in front of each others (with the column of lowest likelihood
proportion in the front) and a stacked histogram. The sequence indicated at the top corresponds to the
most likely ancestral sequence.

Fig. 23: The evaluation settings window.

MetaPIGA 3.0 manual p34

5.7. Building and running batch
files with the GUI
MetaPIGA supports the use of batch files that can
be either written manually (see next Section) or
generated using tools available in the GUI: datasets
and their settings can be duplicated, settings can be “stamped” from one dataset to another, and
multiple combinations of datasets and settings can be saved in a batch file that can be run either in
the GUI (with various graphical information on search progress) or using command line.

5.7.1. Transferring analysis settings among datasets
Batch files are particularly useful for running different datasets with the same analysis settings.
Imagine for example that you have opened 4 datasets in MetaPIGA (‘012x898 - Primate’, ‘PRO-
TEINS - 36x958’, ‘ranoidea_1b’, and ‘055x1314 - mp1’) and that you have chosen all settings (us-
ing the various tabs in the Analysis
Settings window, see section 5.4)
for the dataset ranoidea_1b. Now,
as shown in figure 25, you can
transfer these settings to any com-
bination of other opened datasets by
(i) choosing the source dataset, then
(ii) clicking on the ‘[O] Associate
settings’ button (or by selecting
in the menu: ‘Batch’ ➙ ‘Associate
selected dataset analysis settings’),
then (iii) selecting the dataset(s)
you want to transfer the settings to, and (iv) click on the ‘Associate’ button.
✓ The batch can then be run in the GUI by clicking on the ‘[⇑R] Run batch’ button (or by se-

lecting in the menu: ‘Batch’ ➙ ‘Run all datasets in a batch’)
✓ Alternatively, the user can save the batch by clicking on the ‘Save all files in a Nexus batch’

button (or by selecting in the menu: ‘Batch’ ➙ ‘Save all datasets in a batch Nexus file’). This
file can be run in command line (e.g., on a distant server) or re-imported in MetaPIGA and run
through the GUI.

5.7.2. Duplicating datasets for batch files
Batch files are equally useful for running sequentially a single data set under multiple different set-
tings: for example analyzing your favorite dataset with different substitution models or with differ-
ent heuristics. First make as many duplicates of your dataset (called ‘012x898 - Primate’ in Fig. 26)
as you wish by clicking on the ‘[U] Duplicate selected dataset’ button (or by selecting in the
menu: ‘Batch’ ➙ ‘Duplicate selected dataset’). Then, select a duplicate and change the settings as
required (in the ‘Analysis settings’ window). In this way, you can for example run a batch file that
will sequentially run the ‘Primate’, ‘Primate_1’, ‘Primate_2’, and ‘Primate_3’ datasets with, re-
spectively the JC, K2P, HKY, and GTR substitution models. Note that, when duplicating a file, the
settings listed in the ‘Dataset settings’ window (outgroup taxa, charsets, partitions, etc.) are dupli-
cated as well.

Fig. 25: Transferring settings from one dataset to other dataset(s).

MetaPIGA 3.0 manual p35

a

b

Fig. 26: (a) Duplicating datasets and (b) the parameter panel indicates the modified settings as chosen in the ‘[A]
Analysis Settings’ window (here, we have changed the substitution model to K2P with rate heterogeneity (and
estimated starting parameters) for the ‘Primate_1’ duplicate whereas the initial settings for the ‘Primate’ dataset is
JC).

Notes: when running a batch file:
✓ The run window is simplified (in comparison to what is described above in Section 5.5). Beside basic statistics on

the current run, the batch run window displays (in two separate panels) the log file information on the current run
and on the overall batch. Two buttons allow for stopping either the current run or the entire batch of runs.

✓ The result trees of all replicates of all runs are automatically added to the ‘TreeViewer’.

5.8. Building batch files manually
Instead of using the GUI, you can manually build Nexus batch files. As an example, the file below
will run the single dataset of 15 taxa and 100 characters first with the JC model then with the GTR
model + gamma-distributed rate heterogeneity.
The full list of MetaPIGA commands for manually building batch files are available in the Appen-
dix 1.

Check the end of section 5.2 for instructions on how running MetaPIGA in command line (this
is particularly useful if you want to send jobs to a distant server).

#NEXUS
[Metapiga - LANE (Laboratory of Artificial and Natural Evolution, University of Geneva)]

BEGIN BATCH;
RUN LABEL=15-100 DATA=data_1 PARAM=param_1;
RUN LABEL=15-100_1 DATA=data_1 PARAM=param_2;
END;

BEGIN METAPIGA;
[BATCHLABEL=param_1]
HEURISTIC CP CONSENSUS=STOCHASTIC OPERATOR=SUPERVISED NPOP=4 NIND=4 TOLERANCE=0.05
HYBRIDIZATION=0.1 SELECTION=IMPROVE RECOMBINATION=0.1 OPERATORAPPLIEDTO=IND NCORE=1;
EVALUATION MODEL=JC DISTRIBUTION=NONE PINV=0.0;
OPTIMIZATION ENDONLY ALGO=GA TARGET{ BL };
STARTINGTREE GENERATION=LNJ(0.1)
MODEL=JC DISTRIBUTION=NONE PINV=0.0;

MetaPIGA 3.0 manual p36

OPERATORS { TXS(2) STS(2) TBR NNI SPR BLM } SELECTION=RANDOM;
SETTINGS LABEL=15-100;
STOPAFTER AUTO=200 CONSENSUS MRE=0.03 GENERATION=5 INTERVAL=10;
REPLICATES AUTOSTOP=MRE(0.05) RMIN=100 RMAX=10000 INTERVAL=10 PARALLEL=1;
OUTGROUP { ANABAENA_SP2 };
END;

BEGIN METAPIGA;
[BATCHLABEL=param_2]
HEURISTIC CP CONSENSUS=STOCHASTIC OPERATOR=SUPERVISED NPOP=4 NIND=4 TOLERANCE=0.05
HYBRIDIZATION=0.1 SELECTION=IMPROVE RECOMBINATION=0.1 OPERATORAPPLIEDTO=IND NCORE=1;
EVALUATION
MODEL=GTR RATEPARAM{ A(0.5) B(0.5) C(0.5) D(0.5) E(0.5)} DISTRIBUTION=GAMMA(4)
DISTSHAPE=1.0 PINV=0.0;
OPTIMIZATION ENDONLY ALGO=GA TARGET{ BL R GAMMA };
STARTINGTREE GENERATION=LNJ(0.1) MODEL=JC DISTRIBUTION=NONE PINV=0.0;
OPERATORS { TXS(2) STS(2) TBR NNI SPR BLM RPM(ALL) GDM } SELECTION=RANDOM;
SETTINGS LABEL=15-100_1;
STOPAFTER AUTO=200 CONSENSUS MRE=0.03 GENERATION=5 INTERVAL=10;
REPLICATES AUTOSTOP=MRE(0.05) RMIN=100 RMAX=10000 INTERVAL=10 PARALLEL=1;
OUTGROUP { ANABAENA_SP2 };
END;

BEGIN DATA;
[BATCHLABEL=data_1]
 DIMENSIONS NTAX=15 NCHAR=100;
 FORMAT DATATYPE=DNA MISSING=? GAP=- SYMBOLS="01" LABELS ITEMS=STATES STATESFORMAT-
=STATESPRESENT NOTOKENS;
 MATRIX
Anabaena_sp2! ! CAAGATTACAGACTAACTTATTACACACCTGATTACACACCTAAAGATACAGATATTCTGGCGGCATTCCGTGTTACACCCCAGCCCGGAGTTCCCTTTG
Chara_conniv! ! AAAGATTACAGATTAACTTACTATACTCCTGAGTATAAAACTAAAGATACTGACATTTTAGCTGCATTTCGTGTAACTCCACAACCTGGCGTTCCACCTG
Chlor_ell! ! AAAGACTACCGTTTAACTTACTATACTCCTGATTACCAACCAAAAGACACTGATATTCTTGCAGCGTTCCGTATGACTCCTCAACCAGGTGTTCCACCAG
Volvox_ro! ! AAAGATTATCGTTTAACATACTACACACCTGACTATGTAGTAAAAGACACTGACATCTTAGCAGCATTTCGTATGACTCCACAACCAGGTGTTCCACCTG
Sirogonium_melanosp! AAAGATTACAGACTTACATATTACACTCCTGAATATGAGACCAAAGAAACTGATATTTTAGCTGCATTCCGCATGACTCCTCAGCCTGGAGTACCACCTG
Zygnema_peliosp!! AAAGATTACAGACTTACCTACTATACTCCTGATTATGAGACCAAAGAAACCGACATTTTAGCTGCATTCCGCATGACTCCTCAAGCTGGAGTTCCACCAG
Conocephalum_92!! AAAGATTATCGATTAACTTATTATACTCCGGATTATGAAACTAAAGATACGGATATTTTAGCAGCATTTAGAATGACTCCTCAGCCTGGGGTACCAGCAG
Dumortiera_100! ! AAAGATTATCGATTAACTTATTACACTCCGGATTATGATACCAAGGATACAGATATTTTGGCAGCCTTTAGAATGACTCCTCAGCCTGGAGTACCAGCAG
Marchantia_5! ! AAAGATTATCGATTAACTTATTACACTCCGGATTATGAGACCAAGGATACGGATATTTTAGCAGCATTTAGAATGACTCCTCAGCCTGGAGTTCCAGCGG
Bazzania_jm! ! AAAGATTATAGATTAACCTATTATACGCCTGAATATGAGACCAAAGAGACAGATATTTTGGCAGCATTTCGTATGACTCCCCAACCGGGAGTACCACCTG
Metzgeria_3! ! AAAGATTACAGATTAAATTATTACACTCCAGATTATGAAACTAAAGATACAGATATTCTAGCAGCATTTCGTATGACCCCTCAGCCTGGAGTACCAGAAG
Porella_4! ! AAAGATTATAGATCAACTTATTATACTCCCGACTATGAAACAAAGGAGACAGATATTTTAGCAGCATTTCGTATGACTCCTCAACCTGGAGTACCAGAAC
Anthoceros_6! ! AAAGATTATAGATTAACCCATTATACCCCTGATTACGAGACCAAGGATACTGATATTTTGGCAGCGTCTTGAATGACTCCTTAACCAGGGGTGCCACCTG
Tetraphis_9! ! ?????????AGATTAACTTATTACACTCCAGATTATGAGACCAAAGAGACCGATATTTTAGCAGCATTTCGAATGACTCCTCAACCCGGAGTACCACCTG
Sphagnum_jm! ! AAAGATTACAGGTTGACTTATTACACCCCGGAGTATGCTGTCAAAGATACCGACATTTTGGCAGCATTTCGAATGACTCCTCAACCTGGAGTACCACCCG

;
END;

MetaPIGA 3.0 manual p37

5.9. The ‘Tools’ Menu
In addition to functionalities discussed above (the ‘TreeViewer’, section 5.6.1; the ‘Ancestral states
reconstruction’ panel, section 5.6.2; and the ‘Memory settings’ window, Fig. 1a), the ‘Tools’ menu
(Fig. 27a) also gives access to a ‘Tree Generator’, a ‘Consensus Tree’ builder, and a tool for com-
puting pairwise distances. The ‘Tree Generator’ (Fig. 27b) allows for the generation of the NJ tree
or any number of Loose Neighbor Joining (LNJ; section 5.4.3) or random trees. The trees generated
are automatically transferred to the ‘TreeViewer’ under appropriate names (e.g., NJ, LNJ_1, LNJ_2,
RANDOM_1, RANDOM_2).

a. b.

Fig. 27: (a) The Tools menu; (b), the Tree Generator.

In the ‘Consensus tree builder’ (Fig. 28a), trees in the left panel (corresponding to all trees from the
‘TreeViewer’) can be moved to the right panel for building a majority-rule consensus tree (with fre-
quencies of clades) which is then automatically added to the TreeViewer under a chosen name
(“my_consensus_tree” in Fig. 28a). The pairwise distances tool (Fig. 28b) allows for computing
pairwise distances (among sequences of the active dataset) in the form of absolute numbers of dif-
ferences or various distances: uncorrected (none) or corrected following a nucleotide or amino-acid
or Codon substitution model with or without rate heterogeneity. Distances can be exported to a text
file for spreadsheet applications such as Excel.

a. b.

Fig. 28: (a) the Consensus tree builder; (b) the tool for computing pairwise distances.

MetaPIGA 3.0 manual p38

5.10. Troubleshooting
	
 Please, don’t hesitate to contact us (Dorde.Grbic@unige.ch or michel.milinkovitch@unige.ch)
if you encounter problems or bugs. We are also open to suggestions for improving the software.

A few problems that can arise when using MetaPIGA are listed below.

Launching
When launching, MetaPIGA checks for the availability of updates (unless you have used the argu-
ment [noupdate] in command line). If you are connected to the internet, and there is no update to
download, MetaPIGA will simply proceed with launching. If there is an update available,
MetaPIGA will request your authorization to perform that update. If you are not correctly connected
to the internet when launching the software, MetaPIGA will simply proceed with launching.

Java errors at launch
✓ The Java 1.6 Virtual Machine (VM) must be installed on your computer for running MetaPIGA.

If you only have earlier Java version(s) installed, your computer will complain, e.g., with an er-
ror like that shown in Fig. 29. The Java 1.6 VM can be installed for Windows and Linux at
http://java.com/en/download/manual.jsp. For Mac OSX, simply run the ‘Software Update’ fea-
ture available on the ‘Apple menu’. To check, on your Mac, if Java 6 is installed and active, sim-
ply launch the ‘Terminal.app’ available in the “Utilities” sub-folder of the “Applications”
folder. Then check your Java version by typing ‘java -version’, and pressing ENTER. If you are
using the Snow Leopard Mac OS (OS X 10.6), you can check the version(s) of Java installed on
your machine by launching the ‘Java Preferences.app’ available in the “Utilities” sub-folder of
the “Applications” folder. Make sure that Java 6 (or later) is in the list AND active (i.e., marked
as in Fig. 30). You DON’T need to remove earlier Java versions (that might be required for older
softwares). Note that if your Mac OS is older than 10.5, it will not support Java 1.6 ... hence, you
will not be able to run MetaPIGA.

Fig. 29: Error message at launch due to the absence
of a Java 1.6 (or later) VM.

Fig. 30: The Java Preferences utility on Mac OS X.

✓ If MetaPIGA crashes at launch, it can also be due to a lack of memory. Try closing other applica-
tions, or change the maximum amount of memory allowed to MetaPIGA: in the file
‘mp2_console.vmoptions’ (that you can find at the root of the MetaPIGA folder, i.e., where the
program is installed) , set the Xmx value (and not the Xms value) to a lower value (expressed in
megabytes; this value must be a multiple of 256). Note however that, to avoid problems, we
made the installer allocate to MetaPIGA half of the memory available on your running machine.
This should insure MetaPIGA to launch properly, even if other programs are running. Once

MetaPIGA 3.0 manual p39

mailto:Dorde.Grbic@unige.ch
mailto:Dorde.Grbic@unige.ch
mailto:michel.milinkovitch@unige.ch
mailto:michel.milinkovitch@unige.ch
http://java.com/en/download/manual.jsp
http://java.com/en/download/manual.jsp

MetaPIGA has launched, the ‘memory settings’ (in the ‘Tools’ menu of MetaPIGA) allows
changing the amount of memory allocated to MetaPIGA. The maximum value available in
‘memory settings’ is 1536 Mb on a 32-bit system (i.e., the maximum allowed by java on such a
system) ... even if the computer is equipped with more than 2Go of RAM. On the other hand, the
maximum value available on a 64-bit system (i.e., most of modern machines) can be much
higher than 1536 Mb but is constrained to the amount of memory available on that machine mi-
nus 512Mb.

Recovering results if a crash occurs
A ‘Results.nex’ file is written to the Results directory (see end of section 5.4.5) when the search is
completed. On the other hand, the ‘ConsensusTree.tre’ file is automatically updated in the run di-
rectory during the search. Hence, if a crash occurs, for example after a significant running time in-
volving a number of replicates, the ‘ConsensusTree.tre’ file (summarizing all replicates that accu-
mulated before the crash) can be loaded and visualized in MetaPIGA after restarting. As the name
of the tree includes the number of replicates, you will know when the crash occurred. As the con-
sensus tree file is in Newick format, it can also be loaded in tree viewing softwares such as:
-FigTree (http://tree.bio.ed.ac.uk/software/figtree/)
-TreeView (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html).

Others

✓ When negative eigenvalues are encountered under GTR, an error message is generated and the
search crashes.

✓ Sequences too dissimilar (>0.75 for DNA sequences, >0.95 for Protein sequences, and > 0.5 for
standard binary data) can cause an error when computing distance matrices. The data quality
control button (i.e., ‘scissor’ button, section 5.2.2) and the ‘check for saturation’ function in the
‘Dataset’ menu allow avoiding that problem.

6.	 	 	 Acknowledgements
We are grateful to Alan Lemmon and Raphaël Helaers for continuing discussions on the metaGA.
Funds were provided by the University of Geneva (Switzerland), the Swiss National Science Foun-
dation, the Société Académique de Genève, the Georges and Antoine Claraz Foundation, the Ernst
& Lucie Schmidheiny Foundation, and the ‘AAA/SWITCH – e-infrastructure for e-science pro-
gram’. We thank Nabil Abdennadher and Mohamed Ben Belgacem (HES-Geneva) for assistance in
the deployment of the Grid version of MetaPIGA. We thank Kim Roelants for designing the
MetaPIGA logo (the flying pig because ... “Pigs don’t fly, but MetaPIGA does” ;-)
Third party libraries: MetaPIGA makes use of the following third party libraries (source code
available through the corresponding links):
• The CERN Colt Scientific library 1.2.0 for pseudorandom number generation and statistics:

http://acs.lbl.gov/software/colt/
• JAMA : A Java Matrix Package for matrix manipulations and eigen values decomposition:

http://math.nist.gov/javanumerics/jama/
• The BioJava library to parse NEXUS files: http://www.biojava.org/

BioJava: an Open-Source Framework for Bioinformatics
R.C.G. Holland; T. Down; M. Pocock; A. Prlić; D. Huen; K. James; S. Foisy; A. Dräger; A.
Yates; M. Heuer; M.J. Schreiber
Bioinformatics (2008) 24 (18): 2096-2097; doi: 10.1093/bioinformatics/btn397

• The Google Collection classes library for its BiMap:
http://code.google.com/p/google-collections/

MetaPIGA 3.0 manual p40

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://acs.lbl.gov/software/colt/
http://acs.lbl.gov/software/colt/
http://math.nist.gov/javanumerics/jama/
http://math.nist.gov/javanumerics/jama/
http://www.biojava.org/
http://www.biojava.org/
http://www.bioinformatics.oxfordjournals.org/content/24/18/2096
http://www.bioinformatics.oxfordjournals.org/content/24/18/2096
http://dx.doi.org/10.1093/bioinformatics/btn397
http://dx.doi.org/10.1093/bioinformatics/btn397
http://code.google.com/p/google-collections/
http://code.google.com/p/google-collections/

7.	 	 	 Appendix	 1:	 The	 MetaPIGA	 commands

MetaPIGA	 2	 requires 	 only	 one	 thing	 to	 run:	 a 	 nexus 	 input	 file.	 This 	 file	 must	 contain	 your	 sequence	
data	 following	 the	 standard	 Nexus	 data 	 structure,	 i.e.,	 using	 data	 blocks 	 (or	 taxa	 +	 characters	
blocks).	 This	 file	 can	 be	 loaded	 and	 run	 either	 using	 the 	 menu-‐driven	 interface 	 (GUI)	 of	 MetaPIGA	
2	 or	 in	 command	 line.
All 	 menus 	 are 	 described	 in	 detail 	 above.	 However,	 the	 user	 can	 also	 choose	 to	 include	 all 	 custom-‐
ized	 seMngs 	 of	 MetaPIGA-‐2	 in	 the	 Nexus 	 input	 file	 and	 send	 it	 to	 the	 program	 for	 running	 without	
the	 use	 of	 the	 interface.	 This 	 is 	 parNcularly	 useful 	 for	 performing	 unsupervised	 successive	 mulNple	
long	 runs	 (batch	 files).	 In	 that	 case,	 the	 customized	 seMngs	 of	 MetaPIGA	 must	 be	 included	 in	 the	
Nexus	 input	 file 	 in	 the 	 form	 of	 a 	 ‘metapiga 	 block’.	 The 	 structure	 of	 this 	 block	 is 	 described	 hereaf-‐
ter.	 Note	 that,	 if	 you	 don’t	 like	 typing	 the	 parameter	 seMngs	 yourself,	 you	 can	 use	 the	 MetaPIGA-‐2	
user	 interface	 to	 generate,	 save,	 and	 run	 batch	 files.	

ConvenNons:
When	 a 	 parameter	 is 	 associated	 with	 informaNon	 between	 round	 parentheses	 (),	 there 	 must	 be	
no	 blank	 before	 or	 within	 the	 parentheses.	 	 For	 example:	

DISTRIBUTION = GAMMA(4)
cannot	 be	 wriTen

DISTRIBUTION = GAMMA (4)
nor

DISTRIBUTION = GAMMA(4)
nor

DISTRIBUTION = GAMMA (4)

All 	 parameters 	 between	 squared	 brackets 	 []	 are	 opNonal 	 and	 can	 be 	 omiTed,	 and	 MetaPIGA	 will	
then	 use 	 default	 values	 (underlined	 in	 the	 block	 descripNon).	 DescripNon	 of	 the 	 commands 	 is	
given	 in	 the	 above	 user	 manual	 (SecNon	 5.3:	 ‘Dataset	 seMngs’).

Batch files
You	 can	 easily	 create 	 batch	 files,	 to	 run	 mulNple	 analyses 	 automaNcally.	 Batch	 files	 are	 nexus 	 files	
in	 which	 you	 can	 add	 as 	 many	 data	 block,	 metapiga	 blocks,	 and	 tree	 blocks	 as 	 you	 wish.	 You	 must	
add	 a	 comment	 in	 the	 first	 line	 of	 each	 metapiga 	 block	 in 	 the	 form	 of	 a 	 label	 using	 [BATCHLABEL =
label].	 Then,	 create	 a	 batch	 block	 that	 associates 	 each	 run	 to	 (i)	 a	 data 	 block	 and	 (ii)	 a	 metapiga	
block	 using	 those	 labels.	 The	 use	 of	 a	 tree	 block	 is	 opNonal.
For	 example,	 to	 run	 a	 given	 dataset	 with	 2	 different	 sets 	 of	 parameters 	 (the	 second	 requiring	 user-‐
defined	 starNng	 trees),	 the	 batch	 file	 will	 look	 like	 this:
BEGIN BATCH;

RUN LABEL=’run1’ DATA=label1 PARAM=label1;
RUN LABEL=’run2’ DATA=label1 PARAM=label2 TREE=label2;

END;
BEGIN METAPIGA; [BATCHLABEL = label1]
…
END;
BEGIN METAPIGA; [BATCHLABEL = label2]
…
END;
BEGIN DATA; [BATCHLABEL = label1]
…
END;
BEGIN TREE; [BATCHLABEL = label2]
…
END;

MetaPIGA 3.0 manual p41

BATCH Block
BEGIN BATCH;
RUN LABEL=’run_label’ DATA=data_block_label
PARAM=metapiga_block_label [TREES=tree_block_label];
RUN …

END;

METAPIGA Block
BEGIN METAPIGA;

 [HEURISTIC
‘HC [RESTART = nbr_of_restart]
| SA [COOLINGSCHEDULE = ‘LUNDY | RP(delta) | CAUCHY | BOLTZMANN | GEOM(alpha)
| LIN | TRI | POLY | EXP | LOG | PER | SPER | TANH | COSH’] [LunC = lundy_c]
[LunALPHA = lundy_a] [INITACCEPT = value] [FINALACCEPT = value] [DELTAL =
‘PERCENT[(P)] | BURNIN’] [REHEATING = ‘DECREMENTS(d) | THRESHOLD(p) | NEVER’]
[COOLING = ‘STEPS(steps) | SF(s,f)’] [DYNCS]
| GA [NIND = individuals] [SELECTION = ‘RANK | TOURNAMENT | REPLACEMENT[(S)]
| IMPROVE | KEEPBEST’] [RECOMBINATION = rate] [OPERATORAPPLIEDTO = ‘STEP |
IND’]
| CP [CONSENSUS = ‘STRICT | STOCHASTIC’] [OPERATOR = BLIND | SUPERVISED] [NPOP
= populations] [NIND = individuals] [TOLERANCE = tolerance] [HYBRIDIZATION
= rate] [SELECTION = ‘RANK | TOURNAMENT | REPLACEMENT[(S)] | IMPROVE | KEEP-
BEST’] [RECOMBINATION = rate] [OPERATORAPPLIEDTO = ‘STEP | POP | IND’] [NCORE
= cores]’ ;]

[EVALUATION [RATE = ‘BRANCH | TREE’] [DATATYPE=CODON CODONRANGE{start_position-
end_position}] [MODEL = ‘GTR | TN93 | HKY85 | K2P | JC | GTR20 | WAG |
JTT | DAYHOFF | VT | BLOSUM62 | CPREV | MTREV | RTREV | MTMAM | POISSON
| GTR2 | ECM | GY’] [] [RATEPARAM {param(value) …}] [AAFREQ = ‘EMPIRICAL |
ESTIMATED’] [DISTRIBUTION = ‘NONE | GAMMA(subsets) | VDP(subsets)’] [DIST-
SHAPE = shape] [PINV = proportion_of_invariant];]

[SPECIFICPARTPARAM PARTNAME = charset-name [RATEPARAM {param(value) …}] [DIST-
SHAPE = shape] [PINV = proportion_of_invariant];]

[OPTIMIZATION ‘NEVER | CONSENSUSTREE | ENDSEARCH | DISC(s) | STOCH(p)’ [ALGO =
algorithm] [TARGET {param …}] ;]

[STARTINGTREE [GENERATION = ‘NJ, LNJ(range), RANDOM, GIVEN’] [MODEL = ‘GTR |
TN93 | HKY85 | K2P | JC | GTR20 | POISSON | GTR2 | NONE’] [DISTRIBUTION =
‘NONE | GAMMA(shape)| VDP(subsets)’] [PINV = invariant] [PI = ‘EQUAL |
ESTIMATED | CONSTANT’];]

[OPERATORS {operator[(parameter)] [operator[(parameter)] …]} [SELECTION =
‘RANDOM | ORDERED | FREQLIST’] ;]

[FREQUENCIES {operator(frequency) …} ;]
[DYNAMICFREQ DYNOPERATORS {operator …} [DINT = interval] [DMIN = minimum_fre-

quency];]
[SETTINGS [REMOVECOL = ‘NONE | GAP | NGAP’] [DIR = ’output_directory’] [LABEL

= ’run_label’] [GRID [SERVER = address] [CLIENT = id] [MODULE = id]];]
[STOPAFTER [STEPS = steps] [TIME = hours] [AUTO = steps [AUTOTHRESHOLD =

value]] [CONSENSUS [MRE = error] [GENERATION = steps] [INTERVAL = steps]]
[NECESSARY {stop_condition …}];]

[REPLICATES [AUTOSTOP = ‘NONE | MRE[(error)]’] [RNUM = nbr_rep] [RMIN =
nbr_rep] [RMAX = nbr_rep] [INTERVAL = interval] [PARALLEL = cores];]

[OUTGROUP {taxa …} ;]
[DELETE {taxa …} ;]
[CHARSET NAME = charset-name SET{character-set …} ;] …
[EXCLUDE {charset …} ;]
[PARTITION {charset …} ;]
[LOG {logFile …} ;]

END;

MetaPIGA 3.0 manual p42

Description of the parameters:

1. HEURISTIC –	 By	 default,	 Metapiga	 uses	 the	 metaGA	 heurisNc	 (i.e.,	 a	 geneNc	 algorithm	 with	 consensus	 pruning;	
see	 Lemmon	 &	 Milinkovitch	 2002	 for	 details).	
• HC –	 Hill	 Climbing.	 Tree	 space	 is	 explored	 using	 local	 perturbaNons	 (of	 topology	 and/or	 branch	 lengths	

and/or	 model	 parameters).	 New	 trees	 with	 improved	 likelihood	 are	 always	 accepted	 whereas	 trees	 with	
worse	 score	 are	 always	 discarded.	 This	 is	 the	 ‘stochasNc	 hill	 climbing’	 heurisNc.	 We also implement a meta-
heuristic called 'random-restart hill climbing'. When the RESTART	 parameter	 is	 set	 to	 a	 value	 greater	 than	 0,
RESTART+1	 hill climbings are iteratively performed, each time with a different initial tree. Among the RE-
START+1 solution trees, only the best is kept.
Note that, when choosing the ‘Neighbor Joining’ starting-tree option (see STARTINGTREE parameter), the NJ
tree will only be used for the first hill climbing, and Loose NJ trees will be generated for all restarts. Like-
wise, when choosing 'user trees' but the number of provided starting trees is smaller than RESTART+1, LNJ
random trees will be generated for the missing starting trees. Note also that the stop conditions (see	 STOPAF-
TER parameter) are defined for one hill climbing. For example, when choosing 10 restarts and ‘2000 steps’
as the stop condition, 11 hill climbing of 2000 steps will be performed, but only the best scored tree, among
the 11 results, will be kept.

• SA – Simulated	 Annealing.	 StarNng	 from	 a	 single	 tree,	 tree	 space	 is	 explored	 using	 local	 perturbaNons	 (of	
topology	 and/or	 branch	 lengths	 and/or	 model	 parameters).	 New	 trees	 with	 improved	 likelihood	 are	 always	
accepted,	 whereas	 trees	 with	 worse	 score	 are	 accepted	 with	 a	 probability	 	 which	 is	 a	 funcNon	 of	 both	 the	
proporNonate	 decrease	 in	 score	 and	 a	 control	 parameter	 called	 "temperature".	 Much	 addiNonal	 informa-‐
Non	 is	 available	 in	 Kirkpatrick	 et	 al.,	 OpNmizaNon	 by	 Simulated	 Annealing,	 Science,	 220,	 4598,	 671-‐680	
(1983).

§ SCHEDULE – The	 “cooling	 schedule”	 describes	 how	 the	 “temperature”	 decreases	 during	 the	 run.
	 is	 the	 temperature	 aker	 	 decrements	 and	 	 is	 the	 maximum	 number	 of	 temperature	 decrements	 be-‐
fore	 reseNng	 the	 temperature	 to	 the	 starNng	 temperature	 	 (see	 REHEATING parameter	
below).Except	 for	 the	 LUNDY	 cooling	 schedule,	 	 (and	 when	 it	 applies)	 are	 computed	 as	 follows:
where	 	 is	 an	 upper	 bound	 on	 the	 change	 in	 likelihood,	 	 is	 the	 iniNal	 and	 	 the	 final	 acceptance	 parame-‐
ters	 (see	 below).Available	 schedules	 are	 :

o LUNDY - The	 cooling	 schedule	 described	 by	 Lundy	 (1985).	
with	 	 	
being	 the	 parameter	 that	 controls	 the	 rate	 of	 cooling	 (its	 value	 is	 <	 1)	 where	 	 is	 the	 number	 of	
sequences,	 (taxa)	 is	 the	 number	 of	 sites,	 and	 	 are	 set	 between	 0	 and	 1	 (see	 C	 and	 ALPHA	 pa-‐
rameters	 below)	 and	 	 is	 the	 log	 likelihood	 of	 the	 neighbor	 joining	 tree.	 It’s	 the	 default	 cooling	
schedule.

o RP(delta) – A	 raNo-‐percent	 cooling	 schedule.	
o CAUCHY – Fast	 Cauchy	 schedule.	
o BOLTZMANN – Boltzmann	 schedule.
o GEOM(alpha) – Geometric	 schedule.	
o LIN – Linear	 schedule.	
o TRI – Triangular	 schedule.	
o POLY – Polynomial	 schedule.	
o EXP – Transcendental	 (exponenNal)	 schedule.	
o LOG – Transcendental	 (logarithmic)	 schedule.	
o PER – Transcendental	 (periodic)	 schedule.
o SPER – Transcendental	 (smoothed	 periodic)	 schedule.	
o TANH – Hyperbolic	 (tanh)	 schedule.	
o COSH – Hyperbolic	 (cosh)	 schedule.	

§ LUNC – The	 parameter	 	 used	 in	 the	 LUNDY	 cooling	 schedule.	 You	 can	 set	 its	 value	 between	 [0,1]	 and	
the	 default	 value	 is	 0.5.

§ LUNALPHA – The	 parameter	 	 used	 in	 the	 LUNDY	 cooling	 schedule.	 You	 can	 set	 its	 value	 between	 [0,1]	
and	 the	 default	 value	 is	 0.5.

MetaPIGA 3.0 manual p43

§ INITACCEPT – It’s	 the	 iniNal	 maximum	 probability	 ()	 to	 accept	 a	 tree	 with	 a	 ‘worse’	 likelihood.	
Hence,	 it	 will	 define	 the	 starNng	 temperature	 used	 when	 simulated	 annealing	 starts	 or	 when	 the	
temperature	 is	 reset	 (see	 REHEATING below).	 It’s	 a	 probability,	 chosen	 between	 [0,	 1],	 is	 set	 to	 0.7	
by	 default.	 Used	 with	 all	 cooling	 schedules	 except	 LUNDY.

§ FINALACCEPT – It’s	 the	 final	 maximum	 probability	 to	 accept	 a	 tree	 with	 a	 ‘worse’	 likelihood	 (),	 so	 it	
will	 define	 the	 ending	 temperature	 used	 when	 simulated	 annealing	 should	 end	 or	 before	 reseNng	
the	 temperature	 (see	 REHEATING below).	 It’s	 a	 probability,	 chosen	 between	 [0,	 1],	 must	 be	 smaller	
than	 INITACCEPT	 and	 is	 set	 to	 0.01	 by	 default.	 Only	 used	 with	 LIN,	 TRI,	 POLY,	 EXP,	 LOG,	 PER,	 SPER,	
HYPTANH and	 HYPCOSH cooling	 schedules.

§ DELTAL – Determines	 how	 	 is	 iniNalized.	 	 is	 used	 to	 compute	 the	 starNng	 temperature,	 and	 is	 the	
maximum	 distance	 between	 a	 current	 soluNon	 and	 a	 worse	 soluNon	 that	 could	 be	 accepted	 with	 a	
probability	 of	 .

o PERCENT(p) – 	 is	 set	 to	 a	 percentage	 p	 of	 the	 Neighbor	 Joining	 Tree	 log	 likelihood.	 You	 can	
set	 the	 value	 of	 p	 between	 [0,1]	 and	 the	 default	 is	 0.001	 (0.1%	 of	 the	 NJT).	

o BURNIN – Selected	 operators	 are	 used	 on	 the	 starNng	 tree	 for	 a	 burn-‐in	 period	 of	 20	 appli-‐
caNons	 for	 each	 operator.	 The	 maximum	 change	 in	 log	 likelihood	 observed	 during	 this	 period	
is	 used	 as	 .

§ REHEATING – Determines	 under	 which	 condiNon	 the	 temperature	 is	 reset	 to	 the	 iniNal	 starNng	
temperature.

o NEVER – Temperature	 is	 never	 reset,	 but	 this	 opNon	 can	 only	 be	 selected	 with	 LUNDY,	 RP,	
CAUCHY,	 BOLTZMANN and	 GEOMETRIC cooling	 schedules.

o DECREMENTS(d) – Temperature	 is	 reset	 when	 it	 has	 decreased	 d	 Nmes.	 It’s	 the	 default	 RE-
HEATING opNon,	 usable	 with	 all	 cooling	 schedules.

o THRESHOLD(p) – Temperature	 is	 reset	 when	 it	 aTains	 a	 threshold	 equal	 to	 	 Note	 that	 	 must	
be	 smaller	 than	 1	 and	 sufficiently	 small	 (0.001	 is	 the	 default	 value).	 This	 REHEATING opNon	
can	 only	 be	 used	 with	 LUNDY,	 RP,	 CAUCHY,	 BOLTZMANN and	 GEOMETRIC cooling	 schedules.

§ COOLING – Establishes	 the	 number	 of	 Nmes	 a	 tree	 is	 modified	 before	 the	 temperature	 is	 decreased.	
You	 can	 choose	 between	 2	 cooling	 types:

o 	 STEPS(steps) – Stay	 at	 the	 same	 temperature	 for	 a	 given	 number	 of	 steps.	 	
o SF(s,f) – Lower	 the	 temperature	 aker	 s	 successes	 or	 f	 failures,	 whichever	 comes	 first.	

Successes	 are	 tree	 modificaNons	 that	 improve	 the	 likelihood	 and	 failures	 are	 those	 that	 do	
not.	 This	 COOLING	 is	 used	 by	 default,	 with	 s	 =10	 and	 f	 =100.

• GA – Gene4c	 Algorithm. At	 each	 step	 (generaNon)	 of	 the	 heurisNc,	 each	 individual	 of	 a	 populaNon	 of	
trees	 is	 mutated	 using	 the	 selected	 operators.	 Death	 /	 survival	 of	 individuals	 is	 controlled	 using	 a	 selecNon	
scheme.

§ NIND – The	 number	 of	 individuals	 (trees)	 within	 the	 populaNon	 (set).	 Set	 to	 8	 by	 default.
§ SELECTION – The	 method	 used	 to	 control	 death	 /	 survival	 of	 individuals	 :

o RANK – We	 implement	 a	 rank	 selecNon	 similar	 to	 that	 described	 in	 (Lewis	 1998,	 Mol.	 Biol.	
Evol.	 15,	 277-‐283).	 The	 individual	 having	 the	 highest	 lnL	 is	 automaNcally	 allowed	 to	 leave	
k=0.25*NIND	 offspring	 (i.e.,	 copies	 of	 itself)	 in	 the	 next	 generaNon.	 Then,	 each	 individual	 is	
assigned	 a	 probability	 p	 of	 leaving	 an	 offspring	 as	 a	 funcNon	 of	 its	 posiNon	 in	 a	 list	 in	 which	
individuals	 are	 ranked	 by	 their	 score.	 The	 probability	 p	 for	 the	 ith	 individual	 of	 leaving	 an	 off-‐
spring	 to	 the	 next	 generaNon	 is	 equal	 to:

o TOURNAMENT – Two	 individuals	 are	 drawn	 randomly	 from	 the	 populaNon	 of	 n	 individuals,	 and	
one	 offspring	 is	 produced	 from	 the	 individual	 with	 higher	 score.	 Both	 trees	 are	 then	 placed	
back	 into	 the	 maNng	 populaNon,	 and	 the	 whole	 process	 is	 repeated	 unNl	 n	 offspring	 have	
been	 generated.	 This	 is	 the	 default	 selecNon	 method.

o REPLACEMENT – Two	 individuals	 are	 drawn	 randomly	 from	 the	 populaNon	 of	 n	 individuals	
and	 two	 copies	 of	 the	 beTer	 individual	 are	 returned	 to	 the	 maNng	 pool	 (parents	 are	 dis-‐
carded).	 The	 process	 is	 repeated	 sn	 Nmes,	 where	 s	 is	 the	 strength	 of	 the	 selecNon	 (1.0	 by	 de-‐
fault),	 then	 the	 offspring	 populaNon	 is	 generated	 as	 an	 exact	 copy	 of	 the	 post-‐selecNon	 par-‐
ent	 populaNon.

o IMPROVE –	 Only	 those	 individuals	 that	 have	 scores	 beTer	 than	 that	 of	 the	 best	 tree	 from	 the	
previous	 generaNon	 are	 kept.	 Each	 individual	 that	 fails	 this	 test	 is	 discarded	 and	 replaced	 by	 a	
copy	 of	 the	 current	 best	 individual.	

MetaPIGA 3.0 manual p44

o KEEPBEST – Only	 the	 best	 individual	 of	 each	 populaNon	 is	 kept,	 others	 are	 replaced	 by	 a	
copy	 of	 it.

§ RECOMBINATION	 – Each	 counter-‐selected	 sub-‐opNmal	 individual	 has	 a	 probability	 p	 (between	 [0,	 1]	
and	 set	 to	 0.1	 by	 default)	 to	 recombine	 with	 a	 beTer	 individual	 in	 the	 populaNon.	 RecombinaNon	 is	
performed	 by	 exchanging	 subtrees	 defined	 by	 one	 of	 the	 idenNcal	 taxa	 parNNons	 in	 the	 two	 parental	
trees	 (i.e.,	 one	 internal	 branch	 that	 defines	 subtrees	 including	 the	 same	 taxa	 but	 with	 potenNally	
different	 sub-‐topologies).	 If	 no	 common	 branch	 exists,	 the	 offspring	 is	 defined	 as	 a	 copy	 of	 the	 best	
individual.	 A	 recombinaNon	 event	 can	 be	 viewed	 as	 a	 large	 number	 of	 simultaneous	 topological	 mu-‐
taNons.	 The	 exact	 procedure	 depends	 on	 the	 selecNon	 scheme:

o RANK – RecombinaNon	 is	 not	 available	 under	 that	 selecNon	 scheme.
o TOURNAMENT – With	 a	 probability	 p,	 the	 offspring	 set	 aker	 a	 tournament	 is	 not	 a	 copy	 the	

individual	 with	 higher	 score	 but	 a	 recombinaNon	 between	 the	 two	 trees	 that	 have	 been	 ini-‐
Nally	 drawn	 for	 tournament.

o REPLACEMENT – With	 a	 probability	 p,	 only	 one	 (instead	 of	 two)	 copy	 of	 the	 beTer	 individual	
is	 returned	 to	 the	 maNng	 pool.	 The	 second	 individual	 returned	 is	 a	 recombinaNon	 between	
the	 two	 trees	 that	 have	 been	 iniNally	 drawn.

o IMPROVE –	 Each	 individual	 that	 does	 not	 have	 a	 score	 beTer	 than	 that	 of	 the	 best	 tree	 from	
the	 previous	 generaNon	 has	 a	 probability	 p	 of	 of	 leaving	 an	 offspring	 by	 recombining	 with	 the	
current	 best	 individual.	

o KEEPBEST – Each	 individual	 that	 does	 not	 have	 a	 score	 beTer	 than	 that	 of	 the	 best	 current	
individual	 has	 a	 probability	 p	 of	 of	 leaving	 an	 offspring	 by	 recombining	 with	 the	 current	 best	
individual.

§OPERATORAPPLIEDTO – IND is	 the	 default
o STEP – At	 each	 step	 of	 the	 heurisNc,	 a	 single	 mutaNon	 operator	 is	 selected	 and	 applied	 to	

each	 tree	 of	 each	 populaNon.
o IND – At	 each	 step	 of	 the	 heurisNc,	 each	 individual	 is	 separately	 assigned	 a	 mutaNon	 opera-‐

tor.
• CP – Consensus	 pruning	 (MetaGA). This	 is	 the	 core	 of	 the	 "metaPopulaNon	 geneNc	 Algorithm"	 (Lemmon	

&	 Milinkovitch,	 PNAS	 99:10516-‐10521	 (2002)):	 P	 sets	 (populaNons)	 containing	 each	 I	 trees	 (individuals)	 are	
forced	 to	 cooperate	 in	 the	 search	 for	 the	 opNmal	 trees.	 At	 each	 step	 (generaNon)	 of	 the	 heurisNc,	 individu-‐
als	 are	 mutated	 following	 inter-‐populaNons	 consensus	 rules.	 Death	 /	 survival	 of	 individuals	 is	 defined	 using	
a	 selecNon	 scheme.

§ CONSENSUS – STOCHASTIC is	 chosen	 by	 default
o STRICT – Any	 branch	 shared	 by	 all	 trees	 across	 all	 populaNons	 (100%	 consensus)	 will	 not	 be	

mutated.	 MutaNons	 on	 any	 other	 branch	 will	 be	 unconstrained.	
o STOCHASTIC – Each	 branch	 (parNNon)	 common	 to	 at	 least	 two	 trees	 will	 be	 assigned	 a	 con-‐

sensus	 value.	 The	 probability	 of	 any	 mutaNon	 affecNng	 that	 parNNon	 is	 1-‐(consensus	
value).Example:	 if	 a	 given	 branch	 is	 shared	 by	 12	 among	 16	 trees	 (e.g.,	 4	 populaNons	 of	 4	 in-‐
dividuals	 each),	 any	 mutaNon	 affecNng	 that	 branch	 will	 be	 accepted	 with	 a	 probability	 of	 0.25.	
A	 branch	 shared	 by	 all	 trees	 will	 never	 be	 mutated.

§ OPERATOR – If	 operator	 is	 set	 to	 BLIND,	 a	 mutaNon	 breaking	 a	 consensus	 won’t	 be	 applied	 and	 the	
tree	 will	 remain	 unchanged	 unNl	 the	 next	 mutaNon	 (at	 generaNon	 i+1).	 If	 operator	 is	 set	 to	 SUPER-
VISED,	 the	 operator	 will	 search	 for	 candidate	 mutaNons	 that	 don’t	 break	 any	 consensus.	 If	 no	 such	
candidate	 exists,	 no	 mutaNon	 is	 performed	 and	 the	 tree	 will	 remain	 unchanged	 unNl	 the	 next	 gen-‐
eraNon.

§ NPOP – The	 number	 of	 populaNons	 (sets).	 Set	 to	 4	 by	 default.
§ NIND – The	 number	 of	 individuals	 (trees)	 within	 each	 populaNon	 (set).	 Set	 to	 4	 by	 default.
§ TOLERANCE – The	 CONSENSUS	 command	 constrains	 how	 shared	 branches	 are	 modified.	 The	 TOLER-

ANCE	 parameter	 avoids	 parNNons	 to	 become	 "frozen",	 i.e.,	 inaccessible	 to	 mutaNons.	 The	 TOLERANCE
parameter	 helps	 avoiding	 to	 be	 trapped	 in	 a	 possible	 local	 opNmum.	 Set	 to	 0.5	 by	 default.Example:	
With	 "strict	 consensus"	 and	 a	 tolerance	 of	 0.1,	 any	 branch	 shared	 by	 all	 trees	 is	 anyway	 mutated	 with	
a	 probability	 of	 0.1.

§ HYBRIDIZATION – At	 each	 generaNon,	 there	 is	 a	 probability	 (between	 [0,	 1]	 and	 set	 to	 0.1	 by	 de-‐
fault)	 that	 all	 sub-‐opNmal	 individuals	 from	 one	 random	 populaNon	 are	 not	 mutated	 but,	 instead,	 are	

MetaPIGA 3.0 manual p45

recombined	 with	 one	 individual	 from	 another	 populaNon;	 sub-‐opNmal	 individuals	 from	 other	 popu-‐
laNons	 experience	 the	 normal	 mutaNon	 procedure.

§ SELECTION – The	 method	 used	 to	 control	 death	 /	 survival	 of	 individuals	 :
o RANK – We	 implement	 a	 rank	 selecNon	 similar	 to	 that	 described	 in	 (Lewis	 1998,	 Mol.	 Biol.	

Evol.	 15,	 277-‐283).	 The	 individual	 having	 the	 highest	 lnL	 is	 automaNcally	 allowed	 to	 leave	
k=0.25*NIND	 offspring	 (i.e.,	 copies	 of	 itself)	 in	 the	 next	 generaNon.	 Then,	 each	 individual	 is	
assigned	 a	 probability	 p	 of	 leaving	 an	 offspring	 as	 a	 funcNon	 of	 its	 posiNon	 in	 a	 list	 in	 which	
individuals	 are	 ranked	 by	 their	 score.	 The	 probability	 p	 for	 the	 ith	 individual	 of	 leaving	 an	 off-‐
spring	 to	 the	 next	 generaNon	 is	 equal	 to:

o TOURNAMENT – Two	 individuals	 are	 drawn	 randomly	 from	 the	 populaNon	 of	 n	 individuals,	 and	
one	 offspring	 is	 produced	 from	 the	 individual	 with	 higher	 score.	 Both	 trees	 are	 then	 placed	
back	 into	 the	 maNng	 populaNon,	 and	 the	 whole	 process	 is	 repeated	 unNl	 n	 offspring	 have	
been	 generated.

o REPLACEMENT – Two	 individuals	 are	 drawn	 randomly	 from	 the	 populaNon	 of	 n	 individuals	
and	 two	 copies	 of	 the	 beTer	 individual	 are	 returned	 to	 the	 maNng	 pool	 (parents	 are	 dis-‐
carded).	 The	 process	 is	 repeated	 sn	 Nmes,	 where	 s	 is	 the	 strength	 of	 the	 selecNon	 (1.0	 by	 de-‐
fault),	 then	 the	 offspring	 populaNon	 is	 generated	 as	 an	 exact	 copy	 of	 the	 post-‐selecNon	 par-‐
ent	 populaNon.

o IMPROVE –	 Only	 those	 individuals	 that	 have	 scores	 beTer	 than	 that	 of	 the	 best	 tree	 from	 the	
previous	 generaNon	 are	 kept.	 Each	 individual	 that	 fails	 this	 test	 is	 discarded	 and	 replaced	 by	 a	
copy	 of	 the	 current	 best	 individual.	 This	 is	 the	 default	 selecNon	 method.	

o KEEPBEST – Only	 the	 best	 individual	 of	 each	 populaNon	 is	 kept,	 others	 are	 replaced	 by	 a	
copy	 of	 it.

§ RECOMBINATION – Each	 counter-‐selected	 sub-‐opNmal	 individual	 has	 a	 probability	 p	 (between	 [0,	 1]	
and	 set	 to	 0.1	 by	 default)	 to	 recombine	 with	 a	 beTer	 individual	 in	 the	 populaNon.	 RecombinaNon	 is	
performed	 by	 exchanging	 subtrees	 defined	 by	 one	 of	 the	 idenNcal	 taxa	 parNNons	 in	 the	 two	 parental	
trees	 (i.e.,	 one	 internal	 branch	 that	 defines	 subtrees	 including	 the	 same	 taxa	 but	 with	 potenNally	
different	 sub-‐topologies).	 If	 no	 common	 branch	 exists,	 the	 offspring	 is	 defined	 as	 a	 copy	 of	 the	 best	
individual.	 A	 recombinaNon	 event	 can	 be	 viewed	 as	 a	 large	 number	 of	 simultaneous	 topological	 mu-‐
taNons.	 The	 exact	 procedure	 depends	 on	 the	 selecNon	 scheme:

o RANK – RecombinaNon	 is	 not	 available	 under	 that	 selecNon	 scheme.
o TOURNAMENT – With	 a	 probability	 p,	 the	 offspring	 set	 aker	 a	 tournament	 is	 not	 a	 copy	 the	

individual	 with	 higher	 score	 but	 a	 recombinaNon	 between	 the	 two	 trees	 that	 have	 been	 ini-‐
Nally	 drawn	 for	 tournament.

o REPLACEMENT – With	 a	 probability	 p,	 only	 one	 (instead	 of	 two)	 copy	 of	 the	 beTer	 individual	
is	 returned	 to	 the	 maNng	 pool.	 The	 second	 individual	 returned	 is	 a	 recombinaNon	 between	
the	 two	 trees	 that	 have	 been	 iniNally	 drawn.

o IMPROVE –	 Each	 individual	 that	 does	 not	 have	 a	 score	 beTer	 than	 that	 of	 the	 best	 tree	 from	
the	 previous	 generaNon	 has	 a	 probability	 p	 of	 of	 leaving	 an	 offspring	 by	 recombining	 with	 the	
current	 best	 individual.	

o KEEPBEST – Each	 individual	 that	 does	 not	 have	 a	 score	 beTer	 than	 that	 of	 the	 best	 current	
individual	 has	 a	 probability	 p	 of	 of	 leaving	 an	 offspring	 by	 recombining	 with	 the	 current	 best	
individual.

§ NCORE – The	 number	 of	 cores/processors	 assigned	 for	 parallel	 processing.	 Different	 populaNons	
will	 be	 assigned	 to	 different	 cores.	 Set	 to	 1	 by	 default	 (no	 parallelizaNon).	 WARNING:	 this	 parameter	
should	 be	 considered	 in	 combinaNon	 with	 the	 PARALLEL parameter	 (in	 REPLICATES).	 It	 is	 advised	 to	
leave	 the	 NCORE	 parameter	 to	 1	 when	 you	 perform	 replicates	 with	 parallelizaNon.

§ OPERATORAPPLIEDTO – IND is	 the	 default
o STEP – At	 each	 step	 of	 the	 heurisNc,	 a	 single	 mutaNon	 operator	 is	 selected	 and	 applied	 to	

each	 tree	 of	 each	 populaNon.
o POP – At	 each	 step	 of	 the	 heurisNc,	 each	 populaNon	 is	 separately	 assigned	 a	 mutaNon	 opera-‐

tor	 (i.e.,	 that	 operator	 is	 applied	 to	 all	 individuals	 within	 a	 populaNon).
o IND – At	 each	 step	 of	 the	 heurisNc,	 each	 individual	 is	 separately	 assigned	 a	 mutaNon	 opera-‐

tor.

MetaPIGA 3.0 manual p46

2. EVALUATION –	 By	 default,	 MetaPIGA	 evaluates	 trees	 with	 the	 maximum	 likelihood	 criterion	 using	 a	 single	 rate	
matrix	 R	 for	 the	 TREE,	 the	 JC	 model	 and	 no	 rate	 heterogeneity.	 Note	 that	 if	 the	 dataset	 is	 parNNoned	 with	
charsets,	 some	 parameters	 (RATEPARAM, DISTSHAPE, PINV)	 can	 be	 overridden	 with	 the	 SPECIFICPARTPARAM	
command	 for	 each	 parNNon.
• RATE –	 The	 rate	 matrix	 R	 (by	 default,	 MetaPIGA	 use	 one	 R	 for	 the	 TREE):

§ BRANCH – NOT AVAILABLE YET - A	 different	 rate	 matrix	 R	 is	 used	 for	 each	 branch.	
§ TREE –	 A	 single	 rate	 matrix	 R	 is	 used	 across	 the	 whole	 tree.

• DATATYPE=CODON –	 This	 token	 defines	 that	 nucleoNdes	 in	 this	 data	 set	 should	 be	 interpreted	 as	 codons.	 The	
token	 has	 to	 be	 followed	 by	 the	 CODONRANGE{first_position-last_position} token,	 where	 ‘first_position’	
and	 ‘last_position’	 define	 the	 range	 of	 nucleoNde	 indexes	 that	 will	 be	 interpreted	 as	 codons.

• MODEL –	 Depending	 on	 the	 datatype	 (DNA	 or	 PROTEIN	 or	 STANDARD),	 the	 default	 subsNtuNon	 model	 is	 JC,	
POISSON,	 or	 GTR2,	 respecNvely.	 You	 can	 set	 subsNtuNon	 models	 with:

§ GTR – General-‐Time-‐Reversible	 model	 for	 nucleoNdes.
§ HKY85 – Hasegewa-‐Kishimo-‐Yano	 1985	 model	 (nucleoNdes).
§ TN93 – Tamura-‐Nei	 1993	 model	 (nucleoNdes).
§ K2P – Kimura's	 2	 Parameter	 model	 (nucleoNdes).
§ JC – Jukes	 Cantor	 1969	 model	 (nucleoNdes).
§ GTR20 –	 General-‐Time-‐Reversible	 model	 for	 proteins.
§ WAG –	 Wheland	 and	 Goldman	 model	 (proteins).
§ JTT –	 Jones-‐Taylor-‐Thornton	 model	 (proteins).
§ DAYHOFF –	 Dayhoff	 model	 (proteins).
§ VT –	 Variable	 Time	 subsNtuNon	 matrix	 (proteins).
§ BLOSUM62 –	 BLOSUM62	 (BLOcks	 of	 amino	 acid	 SUbsNtuNon	 Matrix)	 subsNtuNon	 matrix	 (proteins).
§ CPREV –	 Chloroplast	 reversible	 subsNtuNon	 model	 (proteins).
§ MTREV –	 Reversible	 mitochondrial	 subsNtuNon	 model	 (proteins).
§ RTREV –	 RtREV	 subsNtuNon	 matrix	 (proteins).
§ MTMAM –	 Mtmam	 model	 (for	 mitochondrial	 data)	 (proteins).
§ POISSON –	 Poisson	 model	 (proteins).
§ GTR2 –	 General-‐Time-‐Reversible	 model	 for	 standard	 binary	 data.
§ ECM –	 Empirical	 codon	 model	 for	 codon	 data.
§ GY –	 Goldman-‐Yang	 model	 for	 codon	 data.

• RATEPARAM –	 Set	 the	 values	 of	 each	 parameter	 of	 the	 rate	 matrix	 R.
§ A | B | C | D | E	 – The	 five	 parameters	 that	 can	 be	 set	 with	 GTR.	 Set	 to	 0.5	 by	 default.
§ K – The	 kappa	 parameter	 of	 K2P	 and	 HKY85.	 Set	 to	 0.5	 by	 default.
§ K1 |	 K2	 – The	 2	 parameters	 of	 TN93	 (respecNvely	 K1 are	 transiNons	 between	 purines,	 and	 K2	

transiNons	 between	 pyrimidines).	 Set	 to	 0.5	 by	 default.
§ AR | AN | AD | … | WY | WV | YV	 – The	 189	 parameters	 that	 can	 be	 set	 for	 GTR20.	 They	

correspond	 to	 the	 upper	 right	 triangle	 of	 the	 GTR	 subsNtuNon	 matrix,	 with	 the	 20	 amino	 acids	 or-‐
dered	 by	 alphabeNcal	 order	 of	 their	 3-‐leTer	 names	 (A	 R	 N	 D	 C	 Q	 E	 G	 H	 I	 L	 K	 M	 F	 P	 S	 T	 W	 Y	 V).	 For	 ex-‐
ample,	 A<-‐>R	 rate	 is	 set	 using	 AR	 parameter	 (RA	 will	 not	 be	 recognized).	 Set	 to	 0.5	 by	 default.

• AAFREQ –	 Used	 for	 empirical	 protein	 models	 with	 unequal	 equilibrium	 state	 frequencies	 (EMPIRICAL	 by	
default).

§ EMPIRICAL –	 Equilibrium	 amino-‐acid	 frequencies	 are	 fixed	 to	 the	 empirical	 values	 reflecNng	 esN-‐
mates	 of	 the	 corresponding	 model.

§ ESTIMATED –	 	 Equilibrium	 amino-‐acid	 frequencies	 are	 fixed	 to	 those	 observed	 in	 the	 dataset.
• DISTRIBUTION –	 The	 rate	 heterogeneity	 (none	 by	 default).

§ NONE –	 No	 rate	 heterogeneity
§ GAMMA –	 	 Rate	 heterogeneity	 following	 a	 Gamma	 distribuNon.	 The	 number	 of	 rate	 categories	 (4	 by	

default)	 and	 shape	 parameter	 alpha	 (default=1)	 can	 be	 defined.
• DISTSHAPE - Shape	 parameter	 (alpha)	 of	 the	 gamma	 distribuNon.	 Set	 to	 1.0	 by	 default.
• PINV – ProporNon	 of	 invariable	 sites	 (between	 0	 and	 1).	 Set	 to	 0	 (no	 invariant)	 by	 default.

3. SPECIFICPARTPARAM –	 Specific	 evaluaNon	 parameters	 can	 be	 set	 for	 each	 charset	 separately	 if	 the	 dataset	 is	
parNNoned.	 If	 no	 SPECIFICPARTPARAM	 is	 defined	 for	 a	 given	 parNNon,	 parameters	 defined	 with	 the	 EVALUATION	
command	 will	 be	 used.

MetaPIGA 3.0 manual p47

• PARTNAME –	 The	 name	 of	 the	 parNNon	 to	 which	 	 the	 parameters	 apply.	 ATTENTION:	 the	 parNNon	 name	
must	 always	 be	 defined	 before	 RATEPARAM,	 DISTSHAPE	 and	 PINV.

• RATEPARAM –	 Set	 the	 value	 of	 each	 parameter	 of	 the	 rate	 matrix	 R.
§ A | B | C | D | E	 – The	 five	 parameters	 that	 can	 be	 set	 with	 GTR.	 Set	 to	 0.5	 by	 default.
§ K – The	 kappa	 parameter	 of	 K2P	 and	 HKY85.	 Set	 to	 0.5	 by	 default.
§ K1 |	 K2	 – The	 2	 parameters	 of	 TN93	 (respecNvely	 K1 are	 transiNons	 between	 purines,	 and	 K2	

transiNons	 between	 pyrimidines).	 Set	 to	 0.5	 by	 default.
§ AR | AN | AD | … | WY | WV | YV	 – The	 189	 parameters	 that	 can	 be	 set	 for	 GTR20.	 They	

correspond	 to	 the	 upper	 right	 triangle	 of	 the	 GTR	 subsNtuNon	 matrix,	 with	 the	 20	 amino	 acids	 or-‐
dered	 by	 alphabeNcal	 order	 of	 their	 3-‐leTer	 names	 (A	 R	 N	 D	 C	 Q	 E	 G	 H	 I	 L	 K	 M	 F	 P	 S	 T	 W	 Y	 V).	 For	 ex-‐
ample,	 A<-‐>R	 rate	 is	 set	 using	 AR	 parameter	 (RA	 will	 not	 be	 recognized).	 Set	 to	 0.5	 by	 default.

• DISTSHAPE - Shape	 parameter	 (alpha)	 of	 the	 gamma	 distribuNon.	 Set	 to	 1.0	 by	 default.
• PINV – ProporNon	 of	 invariable	 sites	 (between	 0	 and	 1).	 Set	 to	 0	 (no	 invariant)	 by	 default.

4. OPTIMIZATION –	 For	 configuring	 intra-‐step	 opNmizaNon	 frequencies,	 algorithm	 and	 targets.	 There	 are	 5	 ways	 of	
choosing	 when	 MetaPIGA	 opNmizes	 the	 tree	 during	 a	 heurisNc.	 With	 NEVER,	 no	 opNmizaNon	 algorithm	 is	 applied.	
With	 ENDSEARCH,	 final	 trees	 are	 opNmized	 at	 the	 end	 of	 the	 heurisNc.	 With	 CONSENSUSTREE,	 only	 the	 final	 con-‐
sensus	 tree	 built	 using	 all	 replicates	 is	 opNmized	 (when	 perfomring	 single	 searches,	 i.e.	 one	 single	 replicate,	 no	
consensus	 is	 built	 and	 no	 intra-‐step	 opNmizaNon	 of	 target	 parameters	 is	 performed).	 With	 STOCH(p),	 with	 p	
between	 [0.01,	 1],	 there	 is	 a	 probability	 p	 at	 each	 step	 to	 opNmize	 the	 tree.	 With	 DISC(s),	 trees	 will	 be	 opN-‐
mized	 every	 s	 steps.	 Note	 that	 (1)	 with	 STOCH	 and	 DISC,	 opNmizaNon	 of	 the	 final	 trees	 is	 also	 performed	 at	 the	
end	 of	 the	 heurisNc	 (hence,	 at	 the	 end	 of	 each	 replicate	 if	 mulNple	 replicates	 are	 performed)	 and	 (2)	 with	 END-
SEARCH,	 STOCH	 and	 DISC,	 the	 final	 consensus	 tree	 is	 also	 opNmized	 when	 mulNple	 replicates	 are	
performed.You	 can	 also	 set	 :
• ALGO –	 Set	 the	 algorithm	 used	 for	 intra-‐step	 opNmizaNon.

§ GA – GeneNc	 algorithm.	 Simple	 GA	 without	 recombinaNon:	 each	 tree	 to	 be	 opNmized	 is	 copied	 7	
Nmes	 and	 that	 populaNon	 of	 8	 individuals	 is	 experiencing	 mutaNons	 (of	 targets,	 see	 below).	 Selec-‐
Non	 is	 performed	 with	 IMPROVE (see	 above).	 The	 GA	 is	 stopped	 when	 the	 likelihood	 remains	 un-‐
changed	 for	 200	 steps	 (generaNons).

§ POWELL – NOT AVAILABLE YET - DirecNon	 set	 (Powell’s)	 method	 in	 mulNdimensions,	 using	 golden	
secNon	 search	 to	 bracket	 a	 minimum	 of	 the	 likelihood	 funcNon,	 and	 Brent’s	 method	 to	 isolate	 the	
minimum.

§ DFO – NOT AVAILABLE YET - DerivaNve-‐Free	 OpNmizaNon.	 The	 method	 used	 is	 a	 trust-‐region	
algorithm	 that	 employs	 interpolaNon	 models	 of	 degree	 at	 most	 2	 to	 build	 a	 model	 of	 the	 objecNve	
funcNon.	 The	 models	 are	 constructed	 using	 Newton	 fundamental	 polynomials.

• TARGET –	 Set	 the	 targets	 of	 the	 opNmizaNon	 procedure.	
§ BL – Branch	 lengths.
§ R – Parameter(s)	 of	 the	 rate	 matrix	 R	 (not	 relevant	 with	 Jukes	 Cantor	 model).
§ GAMMA – Shape	 parameter	 alpha	 of	 the	 gamma	 distribuNon	 (only	 relevant	 when	 rate	 heterogeneity	

is	 used).
§ PINV – ProporNon	 of	 invariable	 sites	 (only	 relevant	 when	 invariant	 sites	 are	 used).
§ APRATE – Among-‐ParNNon	 rate	 variaNon	 (relaNve	 branch	 lengths	 are	 only	 relevant	 when	 the	 data-‐

set	 is	 parNNoned	 into	 charsets).
5. STARTINGTREE –	 Method	 used	 to	 generate	 the	 starNng	 tree(s)	 for	 the	 heurisNc.	 When	 using	 starNng	 trees	 gen-‐

erated	 by	 NK	 or	 LNJ	 (see	 below),	 a	 model	 (and	 potenNally	 rate	 heterogeneity	 distribuNon	 and	 proporNon	 of	 in-‐
variable	 sites)	 must	 also	 be	 set	 for	 compuNng	 the	 distance	 matrix.
• GENERATION –	 By	 default,	 MetaPIGA	 uses	 Loose	 Neighbor	 Joining	 Trees	 (LNJ)	 as	 starNng	 trees.

§ NJ –	 StarNng	 trees	 are	 built	 using	 the	 Neighbor	 Joining	 method	 (Saitou	 &	 Nei	 1987).
§ LNJ(range) –	 Loose	 Neighbor	 Joining.	 Range	 is	 a	 percentage	 value,	 that	 must	 be	 greater	 than	 0	

and	 smaller	 than	 1.	 StarNng	 trees	 have	 pseudo-‐random	 topologies	 based	 on	 the	 Neighbor	 Joining	
algorithm.	 The	 classical	 NJ	 method	 joins	 2	 nodes	 having	 minimal	 rate-‐corrected	 distance.	 Here,	 un-‐
der	 LNJ,	 a	 list	 containing	 the	 (range x (NTax x NTax-1)/2) smaller	 distances	 will	 be	 built	
and	 two	 nodes	 will	 be	 randomly	 selected	 from	 it.Branch	 lengths	 are	 computed	 normally	 using	 the	
Neighbor	 Joining	 method	 (Saitou	 &	 Nei	 1987).If	 the	 range parameter	 is	 close	 to	 0,	 the	 LNJ	 tree	 will	
be	 similar	 to	 the	 neighbor	 joining	 tree;	 if	 it’s	 close	 to	 1,	 the	 tree	 will	 exhibit	 essenNally	 a	 random	 to-‐
pology.

MetaPIGA 3.0 manual p48

§ RANDOM –	 StarNng	 trees	 have	 random	 topologies	 and	 random	 branch	 lengths.	 No	 distance	 matrix	 is	
used,	 so	 you	 can’t	 choose	 a	 subsNtuNon	 model	 or	 rate	 distribuNon	 or	 proporNon	 of	 invariable	 sites.	
The	 random	 topology	 is	 generated	 by	 starNng	 with	 a	 “root”	 node	 with	 three	 branches	 ending	 each	
with	 an	 ‘open	 slot’.	 We	 know	 the	 list	 of	 available	 T	 taxa	 and	 we	 know	 that	 the	 number	 of	 internal	
nodes	 in	 the	 final	 tree	 will	 be	 (T-‐2-‐root).	 The	 tree	 generator	 cycles	 through	 the	 list	 of	 open	 slots.	
Each	 Nme	 an	 open	 slot	 is	 visited,	 there	 is	 a	 probability	 p=0.5	 to	 fill	 the	 slot	 either	 with	 one	 of	 the	
available	 taxa	 or	 with	 one	 of	 the	 available	 internal	 nodes	 (connected	 to	 two	 new	 branches,	 each	
ending	 with	 an	 open	 slot).	 An	 internal	 node	 is	 always	 added	 if	 only	 one	 open	 slot	 remains.	 The	 algo-‐
rithm	 stops	 when	 all	 internal	 nodes	 and	 taxa	 have	 been	 incorporated.	 	 Branch	 lengths	 are	 drawn	
from	 an	 exponenNal	 distribuNon	 (with	 λ=1),	 and	 shiked	 by	 0.001	 (such	 that	 the	 minimum	 value	 is	
0.001	 and	 the	 mean	 is	 1.001).

§ GIVEN –	 User	 tree(s).	 If	 your	 NEXUS	 file	 contains	 a	 TREE	 block	 (and	 the	 command	 GIVEN	 is	 used),	 and	
if	 you	 selected	 SA	 or	 HC	 as	 the	 heurisNc	 opNon,	 the	 first	 tree	 in	 the	 tree	 block	 will	 be	 loaded	 and	
used	 as	 starNng	 tree.	 If	 you	 selected	 CP	 as	 the	 heurisNc	 opNon	 with	 NPOP	 populaNons,	 the	 NPOP	 first	
trees	 in	 the	 TREE	 block	 will	 be	 loaded	 (one	 tree	 per	 populaNon).	 If	 you	 selected	 GA	 as	 the	 heurisNc	
opNon,	 the	 NIND	 first	 trees	 in	 the	 TREE	 block	 will	 be	 loaded	 (one	 tree	 per	 individual).	 More	 opNons	
for	 imporNng	 user	 starNng	 trees	 are	 available	 in	 the	 GUI	 (see	 point	 5.3.4.	 in	 the	 manual	 above).

• MODEL –	 Depending	 on	 the	 datatype	 (DNA	 or	 PROTEIN	 or	 STANDARD),	 the	 default	 subsNtuNon	 model	 to	
generate	 distance	 matrices	 is	 JC,	 POISSON,	 or	 GTR2,	 respecNvely.	 You	 can	 set	 subsNtuNon	 models	 with	 :

§ GTR – General-‐Time-‐Reversible	 model	 for	 nucleoNdes.
§ HKY85 – Hasegewa-‐Kishimo-‐Yano	 1985	 model	 (nucleoNdes).
§ TN93 – Tamura-‐Nei	 1993	 model	 (nucleoNdes).
§ K2P – Kimura's	 2	 Parameter	 model	 (nucleoNdes).
§ JC – Jukes	 Cantor	 1969	 model	 (nucleoNdes).
§ GTR20 –	 General-‐Time-‐Reversible	 model	 for	 proteins.
§ POISSON –	 Poisson	 model	 (proteins).
§ GTR2 –	 General-‐Time-‐Reversible	 model	 for	 standard	 binary	 data.
§ NONE - No	 distance	 matrix.	

• DISTRIBUTION –	 The	 rate	 heterogeneity	 (none	 by	 default)	
§ NONE –	 No	 rate	 heterogeneity.
§ GAMMA –	 Rate	 heterogeneity	 following	 a	 Gamma	 distribuNon.	 The	 number	 of	 rate	 categories	 is	 fixed	

to	 4	 but	 the	 shape	 parameter	 alpha	 (default=0.5)	 can	 be	 defined.
• PINV –	 ProporNon	 of	 invariable	 sites	 (between	 0	 and	 1).	 Set	 to	 0	 (no	 invariant)	 by	 default.	 If	 PINV	 >	 0,	 the	

total	 number	 of	 sites	 is	 adjusted	 to	 have	 distances	 equal	 to	 the	 mean	 number	 of	 subsNtuNons	 over	 variable	
sites	 only.

• PI –	 Base	 composiNon	 of	 invariant	 sites	 (used	 only	 if	 PINV	 >	 0).
§ EQUAL –	 The	 invariant	 sites	 will	 have	 base	 composiNon	 equal	 to	 0.25.
§ ESTIMATED –	 The	 invariant	 sites	 base	 composiNon	 is	 set	 to	 the	 average	 base	 composiNon	 across	 all	

sequences.
§ CONSTANT –	 (Default)	 The	 invariant	 sites	 base	 composiNon	 is	 set	 to	 the	 average	 base	 composiNon	 of	

the	 site	 which	 are	 constant.
6. OPERATORS	 –	 Sets	 the	 operators	 used	 to	 generate	 new	 soluNon	 trees.	 You	 can	 list	 more	 than	 one	 operator,	 and	

some	 can	 have	 specific	 parameters.	
• SELECTION This	 keyword	 can	 be	 set	 to:	

§ ORDERED -	 Selected	 operators	 are	 chosen	 one	 aker	 another.	
§ RANDOM - (Default)	 Selected	 operators	 are	 randomly	 drawn.	
§ FREQLIST - Selected	 operators	 are	 drawn	 following	 probabiliNes	 defined	 in	 FREQUENCIES.	

• If	 OPERATORS	 parameter	 is	 not	 set,	 MetaPIGA	 uses	 the	 following	 operators	 by	 default:	 NNI,	 BLMINT,
TXS(2), STS(2).	 	 Available	 operators	 are:

§ NNI (NEAREST-NEIGHBOR INTERCHANGE) - Two	 grand-‐children	 branches	 of	 a	 random	 internal	
node	 are	 swapped.

§ SPR (SUBTREE PRUNING AND REGRAFTING) – Removes	 a	 branch	 from	 the	 tree	 with	 a	 subtree	 at-‐
tached	 to	 it	 and	 re-‐graks	 the	 subtree	 elsewhere.

§ TBR (TREE-BISECTION-RECONNECTION)	 – Breaks	 a	 branch	 and	 reconnects	 each	 of	 the	 two	 sub-‐
trees	 on	 a	 random	 branch.	

MetaPIGA 3.0 manual p49

§ TXS (TAXA SWAP) - Swaps	 a	 given	 number	 of	 randomly-‐chosen	 leaves	 (defined	 between	 paren-‐
theses).	 The	 value	 for	 this	 operator	 is	 a	 number	 between	 2	 and	 the	 number	 of	 leaves.	 You	 can	 also	
set	 the	 parameter	 to	 ALL	 (swap	 all	 leaves)	 or	 RANDOM	 (swap	 a	 random	 number	 of	 leaves).	 If	 you	 set	 a	
number	 smaller	 than	 2,	 2	 leaves	 will	 be	 permuted.	 If	 you	 set	 a	 number	 greater	 than	 the	 number	 of	
leaves,	 ALL	 leaves	 will	 be	 permuted.	 Default	 parameter	 is	 2.

§ STS (SUBTREE SWAP) – By	 default,	 swaps	 two	 randomly-‐chosen	 internal	 nodes	 (i.e.,	 subtrees	
that	 contain	 more	 than	 one	 leaf).	 If	 the	 parameter	 is	 set	 to	 RANDOM	 instead	 of	 2,	 the	 whole	 tree	 will	
be	 divided	 into	 a	 random	 number	 of	 subtrees,	 and	 all	 of	 them	 will	 be	 permuted.

§ BLM (BRANCH LENGTH MUTATION) – Randomly	 changes	 the	 length	 of	 a	 randomly-‐chosen	 branch	
by	 mulNplying	 the	 parameter’s	 value	 of	 the	 previous	 generaNon	 by	 a	 random	 number	 drawn	 from	 an	
exponenNal	 distribuNon	 (with	 λ=2),	 and	 shiked	 by	 0.5	 (such	 that	 the	 minimum	 value	 is	 0.5	 and	 the	
mean	 is	 1).

§ BLMINT (BRANCH LENGTH MUTATION ONLY ON INTERNAL BRANCHES) – Randomly	 changes	 the	
length	 or	 a	 randomly-‐chosen	 internal	 branch	 by	 mulNplying	 the	 parameter’s	 value	 of	 the	 previous	
generaNon	 by	 a	 random	 number	 drawn	 from	 an	 exponenNal	 distribuNon	 (with	 λ=2),	 and	 shiked	 by	
0.5	 (such	 that	 the	 minimum	 value	 is	 0.5	 and	 the	 mean	 is	 1).

§ RPM (RATE PARAMETERS MUTATION) –	 Randomly	 changes	 the	 R	 matrix	 values	 by	 mulNplying	 the	
value	 of	 the	 previous	 generaNon	 by	 a	 random	 number	 drawn	 from	 an	 exponenNal	 distribuNon	 (with	
λ=2),	 and	 shiked	 by	 0.5	 (such	 that	 the	 minimum	 value	 is	 0.5	 and	 the	 mean	 is	 1).	 Parameter	 for	 this	
operator	 is	 the	 number	 of	 R	 elements	 to	 change	 (1	 or	 ALL).	

§ GDM (GAMMA DISTRIBUTION MUTATION) –	 Randomly	 changes	 the	 alpha	 parameter	 of	 the	 Gamma	
distribuNon	 by	 mulNplying	 the	 parameter’s	 value	 of	 the	 previous	 generaNon	 by	 a	 random	 number	
drawn	 from	 an	 exponenNal	 distribuNon	 (with	 λ=2),	 and	 shiked	 by	 0.5	 (such	 that	 the	 minimum	 value	
is	 0.5	 and	 the	 mean	 is	 1).	 Only	 available	 when	 gamma-‐distribuNon	 rate	 heterogeneity	 has	 been	 se-‐
lected.

§ PIM (PROPORTION OF INVARIANT MUTATION) –	 Randomly	 changes	 the	 proporNon	 of	 invariables	
sites	 by	 mulNplying	 the	 parameter’s	 value	 of	 the	 previous	 generaNon	 by	 a	 random	 number	 drawn	
from	 a	 normal	 distribuNon	 (with	 mean=1	 and	 SD=	 0.5).	 The	 resulNng	 mulNplier	 is	 rejected	 if	 ≤	
0.4.Only	 available	 when	 proporNon	 of	 invariable	 sites	 has	 been	 selected.

§ APRM (AMONG-PARTITION RATE MUTATION) –	 Randomly	 changes	 the	 among-‐parNNon	 rates	 for	
relaNve	 branch	 lengths	 by	 mulNplying	 the	 parameter’s	 value	 of	 the	 previous	 generaNon	 by	 a	 random	
number	 drawn	 from	 a	 normal	 distribuNon	 (with	 mean=1	 and	 SD=	 0.5).	 The	 resulNng	 mulNplier	 is	 re-‐
jected	 if	 ≤	 0.4.Only	 available	 when	 the	 dataset	 is	 parNNoned	 with	 “charsets”.

7. FREQUENCIES - Used	 to	 set	 the	 frequencies	 of	 operators,	 using	 operator(frequency).
8. DYNAMICFREQ – Operators	 set	 to	 dynamic	 have	 their	 probabiliNes	 of	 use	 automaNcally	 adjusted	 at	 every	 'inter-‐

val'	 to	 reflect	 their	 relaNve	 contribuNons	 to	 score	 improvements	 (the	 probability	 of	 using	 a	 specific	 operator	 is	
increased	 or	 decreased,	 if	 its	 contribuNon	 to	 the	 score	 improvement	 is	 increased	 or	 decreased,	 respecNvely).You	
can	 set	 some	 parameters	 for	 dynamic	 frequencies:
• DYNOPERATORS	 –	 The	 list	 of	 operators	 is	 set	 to	 dynamic.
• DINT –	 Interval	 (in	 number	 of	 steps)	 used	 to	 recompute	 the	 frequencies.	 Set	 to	 100	 by	 default.
• DMIN –	 Frequencies	 can't	 be	 decreased	 under	 the	 lower	 bond	 .	 Set	 to	 0.04	 by	 default.

9. SETTINGS	 –	 Some	 miscellaneous	 MetaPIGA	 seMngs	
• REMOVECOL – Set	 to	 NONE by	 default,	 treaNng	 gaps	 ('-‐')	 as	 N	 (A	 or	 C	 or	 T	 or	 G)	 in	 nucleoNde	 datasets,	 or	 as	

X	 (any	 amino	 acid)	 in	 protein	 datasets,	 or	 as	 ?	 (0	 or	 1)	 in	 standard	 datasets.	 	 Can	 be	 set	 either	 to	 GAP, for	
removing	 every	 column	 containing	 a	 gap	 ('-‐'),	 or	 to	 NGAP	 	 for	 removing	 every	 column	 containing	 a	 gap	 or	 a	
N/X/?	 in	 nucletoNde/protein/standard	 datasets.

• DIR –	 Defines	 the	 whole	 path	 where	 the	 Results	 folder	 will	 be	 placed.	 By	 default,	 results	 folders	 are	 put	 in	 a	
‘MetaPIGA	 results’	 folder	 in	 your	 home	 directory	 (e.g.	 ‘My	 documents’	 in	 Windows).	 If	 you	 use	 the	 DIR
command	 in	 a	 Nexus	 file,	 you	 MUST	 put	 the	 folder	 name	 between	 quotes.

• LABEL –	 Defines	 the	 name	 of	 the	 Results	 folder	 for	 output	 files.	 Changing	 the	 label	 changes	 the	 Results	
folder	 name	 but	 not	 the	 nexus	 file	 name.	 The	 Results	 folder	 will	 be	 placed	 into	 the	 directory	 defined	 with	
the	 DIR	 command.	 The	 Result	 folder	 is	 named	 with	 its	 label	 followed	 by	 the	 date	 (year-‐month-‐day)	 and	
followed	 by	 the	 Nme	 (hour_min_sec)	 at	 the	 which	 the	 search	 was	 started.	 This	 allows	 for	 easy	 differenNa-‐
Non	 of	 results	 performed	 at	 different	 Nmes	 on	 the	 same	 dataset.	 If	 you	 use	 the	 LABEL command	 in	 a	 Nexus	
file,	 you	 MUST	 put	 the	 label	 name	 between	 quotes.

MetaPIGA 3.0 manual p50

• GRID – NOT AVAILABLE YET - MetaPIGA	 will	 run	 through	 a	 GRID	 using	 the	 XtremWeb-‐CH	 middleware	
(see	 hTp://www.xtremwebch.net/).	 You	 must	 specify	 the	 server	 address	 (e.g.	
SERVER=HTTP://ADDRESS:8080),	 your	 idenNfier	 on	 the	 GRID	 (CLIENT	 command)	 and	 the	 idenNfier	 of	 the	
MetaPIGA	 module	 on	 the	 GRID	 (MODULE	 command).	 Note	 that	 when	 MetaPIGA	 runs	 on	 a	 GRID,	 it	 does	 not	
generate	 any	 log	 file	 (LOG command	 is	 ignored).	 GRID	 running	 is	 disabled	 by	 default.

10. OUTGROUP –	 Sets	 any	 number	 of	 taxa	 that	 will	 form	 the	 outgroup	 (all	 other	 taxa	 are	 in	 the	 ingroup).	 Operators	
will	 never	 mix	 up	 taxa	 between	 the	 outgroup	 and	 the	 ingroup.	 The	 tree	 is	 rooted	 between	 outgroup	 and	 ingroup.

11. DELETE 	 –	 Sets	 any	 number	 of	 taxa	 that	 will	 be	 removed	 from	 the	 analysis.
12. CHARSET – Defines	 a	 charset	 ;	 you	 must	 use	 a	 different	 CHARSET command	 for	 each	 charset	 to	 be	 defined.	 For	

each	 one,	 you	 must	 give	 its	 NAME and	 a	 list	 of	 character	 posiNons	 with	 SET.	 For	 defining	 a	 range	 of	 character	 po-‐
siNons,	 you	 can	 use	 2	 posiNons	 separated	 by	 ‘-‘	 (like	 60-125),	 and	 potenNally	 add	 ‘/’	 and	 the	 interval	 size.	 For	
example	 60-125/3	 will	 take	 posiNons	 60, 63, 66, 69, 72, …, 120, 123.	 	 Charsets	 can	 be	 defined	 as	
the	 combinaNon	 of	 other	 charsets	 (defined	 higher	 in	 the	 METAPIGA	 block)	 or	 by	 the	 combinaNon	 of	 charset(s)	
and	 	 character	 list.

13. EXCLUDE 	 –	 Sets	 any	 number	 of	 charsets	 that	 will	 be	 excluded	 from	 the	 analysis.	 A	 charset	 is	 defined	 by	 2	 charac-‐
ter	 posiNons	 (like	 60-125),	 or	 can	 be	 defined	 with	 the	 CHARSET	 command.

14. PARTITION 	 –	 Divides	 the	 data	 matrix	 in	 charsets	 and	 compute	 likelihood	 separately	 for	 each	 charset.	 A	 charset	
is	 defined	 by	 2	 character	 posiNons	 (like	 60-125),	 or	 can	 be	 defined	 with	 the	 CHARSET	 command.

15. STOPAFTER 	 –	 Sets	 the	 stop	 criterion	 of	 the	 heurisNc.	 Any	 number	 of	 condiNons	 can	 be	 set	 and	 each	 one	 can	 be	
necessary	 or	 sufficient.	 The	 heurisNc	 stops	 when	 any	 of	 the	 sufficient	 condiNons	 is	 met	 or	 when	 all	 necessary	
condiNons	 are	 met.	 CondiNons	 are	 sufficient	 by	 default	 and	 can	 be	 switch	 to	 necessary	 using	 the	 NECESSARY	
command.	 If	 STOP AFTER	 is	 not	 set,	 the	 heurisNc	 will	 not	 start	 but	 starNng	 tree(s)	 will	 be	 generated.
• STEPS - Defines	 a	 maximum	 number	 of	 generaNons.
• TIME – 	 Allows	 to	 stop	 the	 heurisNc	 aker	 a	 given	 amount	 of	 Nme	 (in	 hours).
• AUTO – AUTO	 will	 stop	 the	 heurisNc	 if	 the	 best	 soluNon	 evaluaNon	 doesn’t	 improve	 more	 than	 a	 given	 per-‐

centage	 (AUTOTHRESHOLD	 parameter,	 set	 to	 0.0001	 by	 default,	 i.e.	 0.01%)	 at	 any	 step	 during	 the	 defined	
number	 of	 steps.

• CONSENSUS – CONSENSUS	 can	 only	 be	 used	 with	 Consensus	 Pruning	 (metaGA	 heurisNc),	 and	 will	 stop	 the	
heurisNc	 when	 the	 mean	 relaNve	 error	 among	 consensus	 trees	 (INTERVAL	 parameter,	 set	 to	 10	 by	 default)	
remains	 below	 a	 given	 value	 (set	 with	 MRE	 parameter,	 0.03	 by	 default).	 Each	 consensus	 tree	 is	 built	 using	 all	
trees	 from	 all	 populaNons	 in	 a	 generaNon.	 As	 consensus	 trees	 tend	 not	 to	 vary	 much	 between	 2	 consecuNve	
generaNons,	 the	 user	 is	 advised	 to	 allow	 several	 generaNons	 between	 sampling	 (with	 GENERATION	 parame-‐
ter,	 set	 to	 5	 by	 default).

• NECESSARY – The	 following	 condiNons	 can	 be	 switched	 to	 necessary	 :	 STEPS,	 TIME,	 AUTO,	 CONSENSUS.
16. REPLICATES	 –	 The	 number	 of	 Nmes	 the	 metaheurisNc	 will	 be	 repeated	 with	 the	 same	 dataset.	 At	 the	 end,	 a	

majority-‐rule	 consensus	 tree	 is	 produced.	 By	 default,	 only	 one	 tree	 is	 produced.
• AUTOSTOP – Adds	 a	 stop	 condiNon	 to	 replicates’	 generaNon.	

§ NONE - By	 default,	 there	 is	 no	 stop	 condiNon,	 so	 a	 given	 number	 of	 replicates	 is	 produced.	 You	 can	
set	 the	 number	 of	 replicates	 produced	 with	 RNUM	 parameter.

§ MRE(error) – This	 opNon	 allows	 MetaPIGA	 to	 stop	 producing	 replicates	 when	 the	 Mean	 RelaNve	
Error	 among	 consecuNve	 consensus	 trees	 remains	 below	 a	 given	 value.	 Error	 is	 a	 value	 between	
[0,1]	 set	 to	 0.05	 by	 default.	
o RMIN – The	 minimum	 number	 of	 replicates	 to	 produce.	 Default	 value	 is	 100.
o RMAX – The	 maximum	 number	 of	 replicates	 to	 produce.	 Default	 value	 is	 10	 000.
o INTERVAL – The	 number	 of	 consecuNve	 consensus	 trees	 (set	 to	 10	 by	 default)	 that	 must	

have	 a	 MRE	 below	 a	 given	 value	 before	 stopping	 the	 producNon	 of	 replicates	 .
• PARALLEL – The	 number	 of	 replicates	 to	 be	 run	 in	 parallel	 (i.e.,	 simultaneously).	 By	 default,	 this	 parameter	

is	 set	 to	 1	 (no	 parallel	 processing).	 	 WARNING:	 It	 is	 strongly	 advised	 not	 to	 use	 a	 value	 greater	 than	 the	
number	 of	 processors/cores	 available	 on	 the	 running	 computer.	 WARNING2:	 this	 parameter	 must	 be	 con-‐
sidered	 in	 combinaNon	 with	 the	 parameter	 NCORE	 (i.e.,	 the	 number	 of	 cores/processors	 assigned	 for	 paral-‐
lel	 processing	 WITHIN	 a	 replicate).	 For	 example,	 if	 you	 use	 a	 computer	 with	 4	 cores,	 set	 the	 NCORE	 parame-‐
ter	 to	 1	 and	 the	 PARALLEL	 parameter	 to	 4,	 such	 that	 each	 replicate	 will	 use	 a	 single	 core	 (i.e.,	 4	 replicates	
will	 be	 run	 simultaneously).	 If	 you	 use	 a	 computer	 with	 8	 cores,	 you	 can	 set	 the	 NCORE	 parameter	 to	 2	 and	

MetaPIGA 3.0 manual p51

http://www.xtremwebch.net
http://www.xtremwebch.net
http://address:8080
http://address:8080

the	 PARALLEL	 parameter	 to	 4,	 such	 that	 each	 replicate	 will	 use	 two	 cores	 AND	 4	 replicates	 will	 be	 run	 simul-‐
taneously.

17. LOG	 –	 Set	 the	 log	 files	 you	 want	 as	 output.	 They	 can	 give	 you	 valuable	 informaNon	 on	 what	 happens	 during	 the	
execuNon	 of	 MetaPIGA.	 Be	 aware	 that	 selecNng	 the	 log	 files	 indicated	 with	 asterisks	 can	 (i)	 significantly	 slow	
down	 the	 search	 and	 (ii)	 fill	 up	 large	 amount	 of	 disk	 space	 (with	 the	 magnitude	 of	 slow-‐down	 /	 fill-‐up	 approxi-‐
mately	 indicated	 by	 the	 number	 of	 asterisks).	 	 All	 log	 files	 are	 wriTen	 in	 the	 results	 folder.	
• DATA - Working	 matrix	 log	 file	 -‐	 Prints	 the	 compressed	 dataset	 to	 'Dataset.log'.	 The	 last	 row	 contains	 the	

weight	 of	 each	 column,	 i.e.,	 the	 number	 of	 Nmes	 this	 data	 paTern	 is	 found	 in	 the	 data	 matrix.	 .
• DIST – Distance	 matrix	 log	 file	 -‐	 Prints	 the	 distance	 matrix	 to	 'Distances.log'.
• TREESTART – StarNng	 Trees	 log	 file	 -‐	 Prints	 the	 starNng	 tree(s)	 to	 'StarUngTrees.tre'.
• HEUR (*) – HeurisNc	 search	 log	 file	 -‐	 The	 'HeurisUc.log'	 file	 records	 details	 about	 each	 step	 of	 the	 heuris-‐

Nc	 used.	 It	 requires	 disk	 space	 between	 500	 bytes	 and	 1	 Kb	 per	 iteraNon	 of	 the	 heurisNc.
• TREEHEUR (**) – HeurisNc	 search	 tree	 file	 -‐	 'The	 'HeurisUc.tre'	 file	 records	 each	 tree	 found	 at	 each	 step	

of	 the	 heurisNc.	 It	 requires	 disk	 space	 of	 +/-‐	 130	 bytes	 per	 taxa	 per	 tree	 recorded.	 For	 example,	 recording	
trees	 for	 a	 dataset	 of	 200	 taxa,	 using	 the	 metaGA	 heurisNc	 with	 4	 populaNons	 of	 4	 individuals	 each,	 for	 a	
fixed	 amount	 of	 5000	 generaNons	 will	 generate	 a	 file	 of	 about	 1.5Gb	 for	 each	 replicate	 produced.

• CONSENSUS (**) –Consensus	 log	 file	 -‐	 The	 ‘Consensus.log'	 file	 records	 consensus	 at	 each	 step	 of	 Consen-‐
sus	 Pruning.	 It	 requires	 disk	 space	 between	 100	 bytes	 and	 1Kb	 per	 taxa	 and	 per	 consensus	 recorded.	 For	
example,	 recording	 consensus	 for	 a	 dataset	 of	 200	 taxa,	 using	 the	 metaGA	 heurisNc	 for	 a	 fixed	 number	 of	
5000	 generaNons	 will	 generate	 a	 file	 between	 100Mb	 and	 1Gb	 for	 each	 replicate	 produced..

• OPDETAILS (***) - Operators	 log	 file	 -‐	 The	 'OperatorsDetails.log'	 file	 records	 details	 about	 the	 opera-‐
tors	 used.	 It	 requires	 disk	 space	 of	 200-‐300	 bytes	 per	 taxa	 per	 operaNon.	 For	 example,	 recording	 operator	
details	 for	 a	 dataset	 of	 200	 taxa,	 using	 the	 metaGA	 heurisNc	 with	 4	 populaNons	 of	 4	 individuals	 each,	 for	 a	
fixed	 number	 of	 5000	 generaNons	 will	 generate	 a	 file	 between	 1.7Gb	 and	 3.4Gb	 for	 each	 replicate	 pro-‐
duced.

• OPSTATS –	 Operator	 staNsNcs	 file	 –	 The	 ‘OperatorsStaNsNcs.log’	 file	 records	 operator	 staNsNcs	 at	 the	 end	
of	 a	 search,	 as	 well	 as	 each	 Nme	 the	 operator	 frequencies	 have	 been	 updated.

• ANCSEQ (*) - Ancestral	 sequences	 log	 file	 -‐	 At	 the	 end	 of	 the	 heurisNc,	 the	 ancestral	 sequence	 probabili-‐
Nes	 of	 each	 internal	 node	 are	 printed	 into	 the	 'AncestralSequences.log'	 file.

• PERF (*) – The	 ‘Performances.log’	 file	 records	 the	 amount	 of	 Nme	 (in	 nanoseconds)	 used	 by	 each	 op-‐
erator.	 It	 requires	 disk	 space	 of	 +/-‐	 1	 Kb	 per	 iteraNon	 of	 the	 heurisNc.

MetaPIGA 3.0 manual p52

8.	 	 	 Appendix	 2:	 Using	 the	 Stochastic	 Simulated	 Annealing	 (SSA)

Select the ‘Simulated Annealing’ radio button in the ‘Heuristic’ window to see all available parame-
ters (Fig. 31). We implemented 14 highly-parametrized cooling schedules in MetaPIGA, including
the ‘Lundy’ cooling schedule [26, 43]. The user can control all cooling schedule parameters: the
starting temperature computation method, the maximum acceptance probability, the temperature
decrease frequency, and the possibility of ‘reheating’. Changing the cooling schedule in the ‘Heu-
ristic’ window will change the set of available parameters. Note that several of these cooling sched-
ules are quite similar to each others such that we might reduce the number of available schedules in
future versions of MetaPIGA.

Fig. 31: The ‘Heuristic’ window with ‘Simulated annealing’ selected and the ‘Lundy schedule’ settings.

In each of the 14 available cooling schedules, Ti is the temperature after i decrements, and Γ is the
maximum number of temperature decrements before reinitialization to T0 (the starting temperature).
Except for the ‘Lundy schedule’, T0 (and TΓ when relevant) is computed as follows:

T0 =
−ΔL
lnA0

 	
 	
 and 	
 	
 TΓ =
−ΔL
lnAΓ

	
 	
 	
 	

where ΔL is the upper limit of likelihood change, whereas A0 and AΓ are, respectively, the initial
and final ‘maximal acceptance parameter’, i.e., the maximal probability to accept a tree with a
worse likelihood. Hence, A0 and AΓ define the initial and final temperature values, and the cooling
schedule defines how the temperature is decreased between these two values. The various cooling
schedules (and corresponding curve equations of temperature change) are listed below, with A0 and
AΓ defined by the user. The cooling schedule requires defining the number of iterations (i.e., the
number of times operators have been used to generate a change in the tree) after which a tempera-
ture decrement is performed. The user can choose either (i) the number of iterations (steps) or (ii)
the number of successes (generating better trees) or failures (not generating better trees) required
before a temperature decrement is performed. As decreasing the temperature translates into reject-
ing more easily trees with lower likelihoods, a reheating parameter allows defining when the tem-

MetaPIGA 3.0 manual p53

perature is reinitialized to T0 to facilitate crossing of valleys in likelihood space. Finally, the method
for defining ΔL (required for computing the initial and final temperatures) is also chosen by the user
either as the percentage of the Likelihood of the Neighbor-Joining tree or as an estimate generated
by burn-in. In the latter case, each mutation operator is applied 20 times on the starting tree and the
maximum difference of likelihood observed is used as ΔL. The table below shows the cooling
schedules implemented in metaPIGA.

Cooling	 schedule Corresponding	 curve	 equa4on curve

	 Lundy	

	 (with	 c	 and	 α	 as	
user-‐defined	 pa-‐
rameters)

Ti+1 =
ΔL
1+ iβ

	 	
 with	 β =
c

(1−α)n +α
− ln NJT

m

β	 is	 the	 cooling	 rate	 (its	 value	 is	 <	 1)	 and	 is	 computed	 using	 parameters	
from	 the	 dataset:	 n is the number of sequences, m is the number of
aligned columns, c and α have values between 0 and 1, and lnNJT
is the log likelihood of the neighbour-joining tree.

	 Ra4o-‐Percent	

	 (with	 parameter)
Ti+1 = δTi 	
 with δ<1

	 Fast	 Cauchy Ti =
T0
i
	 	 	 	

	 Boltzmann 	 Ti =
T0
ln i

	 Geometric	

	 (with	 parameter)
Ti = T0α

i 	
 with α<1

	 Linear 	 	 Ti = T0 − i
(T0 − TΓ)

Γ

	 Triangular 	 Ti = T0
T0
TΓ

⎛
⎝⎜

⎞
⎠⎟

i /Γ

	 Polynomial Ti =
(T0 − TΓ)(Γ +1)

Γ(i +1)
+ T0 −

(T0 − TΓ)(Γ +1)
Γ

MetaPIGA 3.0 manual p54

	 Transcendental	
	 -‐	 exponen4al Ti = TΓ +

(T0 − TΓ)
1+ e3(i−

Γ
2)

	 Transcendental
	 -‐	 logarithmic 	 Ti = T0e

−
i
Γ

⎛
⎝⎜

⎞
⎠⎟
2
ln
T0
TΓ

	 Transcendental
	 -‐	 periodic Ti =

(T0 − TΓ)
2

1+ cos iΠ
Γ

⎛
⎝⎜

⎞
⎠⎟
+ TΓ

	 Transcendental
	 -‐	 smoothed	 peri-‐
odic

	 Ti =
(T0 − TΓ)

4
2 + cos8iΠ

Γ
⎛
⎝⎜

⎞
⎠⎟
e
−
i
2Γ

	 Hyperbolic
	 -‐	 tangent Ti =

(T0 − TΓ)
2

1− tanh(10i
Γ

− 5)⎛
⎝⎜

⎞
⎠⎟
+ TΓ

	 Hyperbolic
	 -‐	 cosinus

Ti =
(T0 − TΓ)
cosh 10iΓ

+ TΓ

MetaPIGA 3.0 manual p55

9.	 	 	 Appendix	 3:	 A	 simple	 introduction	 to	 ML	 phylogeny	 inference

9.1. Introduction

	
 The Maximum Likelihood approach to phylogeny inference is based on the use of a substitu-
tion model that allows computing the likelihood of a tree, i.e., the probability that its topology and
branch lengths (given the model parameters, such as instantaneous substitution rates, state frequen-
cies, gamma distribution of rates, etc) yielded the observed data. Substitution models used in the
field of phylogeny inference are Markovian: the conditional probability distribution of future states
depends only upon the present state, i.e., the probability of change of a character from state i to state
j does not depend on the history of the character before state i. We also assume that the Markov
process is homogeneous (i.e., the instantaneous substitution probabilities are identical everywhere
in the tree) and time-reversible (the substitution rate i → j is identical to the substitution rate j → i).
Given time reversibility, the likelihood of a tree does not depend on where that tree is rooted. In
other words, trees are unrooted and the choice of outgroup taxa (orienting the tree in time) is an as-
sumption performed by the user. Finally, we assume that different characters (i.e., different posi-
tions in the multiple alignment) evolve independently, such that the likelihood of every character
can be computed separately.

9.2. The General-Time-Reversible (GTR) Model

	
 The easiest way to represent a model is by using a matrix Q in which each element Qij is the
instantaneous substitution rate from state i to state j. We use here the example of a 4x4 matrix for
nucleotide substitutions, but the concept is the same for amino-acid substitutions or codon substitu-
tions (but the corresponding matrices are then 20x20 and 64x64, respectively).

Q =

−(µaπC + µbπG + µcπT) µaπC µbπG µcπT

µgπ A −(µgπ A + µdπG + µeπT) µdπG µeπT

µhπ A µiπC −(µhπ A + µiπC + µ fπT) µ fπT

µ jπ A µkπC µlπG −(µ jπ A + µkπC + µlπG)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

where πi is the equilibrium frequency of state i, and μ is the mean instantaneous substitution rate.
The latter is modified with relative rate parameters a, b, ..., l specific to each possible substitution.
However, as indicated above, we use time-reversible models, such that a=g, b=h, c=j, d=i, e=k, and
f=l. The diagonal elements of the matrix make the sum of each line equal to zero.

The instantaneous substitution rate matrix Q can be decomposed into a rate matrix R and an equilib-
rium frequency matrix Π:

Q = R X Π	
	
 	
 	
 	
 	
 	
 Equation 2

where

MetaPIGA 3.0 manual p56

R =

− µa µb µc
µa − µd µe
µb µd − µ f
µc µe µ f −

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

	
 	
 	
 	
 Equation 3

and

Π =

π A 0 0 0
0 πC 0 0
0 0 πG 0
0 0 0 πT

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	
 	
 	
 	
 Equation 4

The mean instantaneous substitution rate can be computed as follows:

µ =
1

π i ′Qiji≠ j

A,C ,T ,G∑
	
 	
 	
 	
 	
 Equation 5

where

′Q =

− aπC bπG cπT

aπ A − dπG eπT

bπ A dπC − fπT

cπ A eπC fπG −

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	
 	
 	
 Equation 6

9.3. Computing the likelihood of a tree

	
 The principle for estimating the likelihood of a tree is based on computing the probability of a
substitution from state i to state j (with i and j possibly identical) given the length vx of the branch x.
Given that a nucleotide in a sequence can experience multiple substitutions through time, the prob-
ability of observing a substitution between two nodes is not a linear function of the branch length vx
but takes the form:

p(t) = e−λt 	
 	
 	
 	
 	
 	
 Equation 7

where λ and t are the substitution rate and the time, respectively. Note that it is not possible to sepa-
rate λ and t because a branch can be long due to a long time and/or a large rate. In other words, the
branch length is λt.

When considering the GTR model, the equation takes the form

p(t) = eQt 	
 	
 	
 	
 	
 	
 Equation 8

MetaPIGA 3.0 manual p57

Where Q is the instantaneous substitution matrix (equation 1). The equation can be computed by
using the eigenvectors and eigenvalues of the matrix.
Partitions are incorporated in the computation by multiplying t (in Equation 8) by Θp, i.e., the rela-
tive rate of partition p. Relative rates of partitions are optimized separately but each partition is
weighted according to its size (S(p)), and the weighted average of among-partitions rates is con-
strained to 1, i.e.,

	
 S(p).Θ p
p

nPar

∑ = 1 	
 	
 	
 	
 	
 Equation 9

Let’s take a simple example. If the observed sequence data, and the tree to evaluate, are respec-
tively:

Taxon_1 ACCGTCATCAGG
Taxon_2 GCTATCGCCAGC
Taxon_3 ACCGTTATCAGG
Taxon_4 GCTGTCGTCAGG

v1 v2

v3 v4
v5

T2
T1

T3
T4

y x

Friday, April 23, 2010

the likelihood of that tree is the probability to generate the observed data given the substitution
model. The process is performed separately for each position (each column in the alignment). Let’s
consider the first position (underlined in the sequence alignment above). The states at the internal
nodes X and Y are unknown. Imagine that both X and Y were of state A. Given that Taxa 1 and 3 ex-
hibit a A, and that Taxa 2 and 4 exhibit a G, the full probability of observing the first position given
the tree is the Probability to:

observe no change between Y(=A) and Taxon_1(=A) given branch length v1
AND	
 	
 observe no change between Y(=A) and Taxon_3(=A) given branch length v3
AND	
 	
 observe a change from X(=A) to Taxon_2(=G) given branch length v2
AND	
 	
 observe a change from X(=A) to Taxon_4(=G) given branch length v4
AND	
 	
 observe no change from X(=A) to Y(=A) given branch length v5

In probabilistic terms, the full probability of observing states A, G, A, and G for, respectively, the
sequences 1, 2, 3, and 4, GIVEN that the internal nodes X and Y exhibit the state A is:

h(A,G,A,G⎮X=A,Y=A) = PAA(v1) . PAA(v3) . PAG(v2) . PAG(V4) . PAA(V5)	
 	
 Equation 10

However, we don’t know the unobserved states of the internal nodes, such that the combination
considered above (X=Y=A) is only one possibility. Hence, we have to consider each possible com-
bination of states. In the simple tree above, there are only 2 internal nodes and 16 possibilities:

X=A and Y=A	
 combination 1
X=A and Y=G	
 combination 2
X=A and Y=C	
 combination 3
...
X=T and Y=T	
 combination 16

MetaPIGA 3.0 manual p58

Hence, the full probability of generating the first position in the alignment above (i.e., states A, G,
A, and G for, respectively, the sequences 1, 2, 3, and 4) is the sum of the probabilities of combina-
tions 1 to 16. In other words, the real (unobserved) states of the internal nodes corresponded to
combination 1 or combination 2 or combination 16. In probabilistic terms, we therefore need to
compute:

Prob(combination 1) + Prob(combination 2) + ... + Prob(combination 16)	
 	
 Equation 11

	
 where “Prob(combination 1)” is equation 10.

To generalize, the likelihood of observing the first position of the alignment above given the follow-
ing tree

seq1 ACCGTCATCAGG
seq2 GCTATCGCCAGC
seq3 ACCGTTATCAGG
seq4 GCTGTCGTCAGG

v1 v2

v3 v4
v5

T2
(G)

T1
(A)

T3
(A) T4

(G)

y x

h(A,G,A,G) = gxPxG(v 4)PxG(v 2) Pxy(v 5)PyA(v1)PyA(v 3)
y
!

x
!

P(t) = e
Rt

is (equation 12):

seq1 ACCGTCATCAGG
seq2 GCTATCGCCAGC
seq3 ACCGTTATCAGG
seq4 GCTGTCGTCAGG

v1 v2

v3 v4
v5

T2
(G)

T1
(A)

T3
(A) T4

(G)

y x

h(A,G,A,G) = gxPxG(v 4)PxG(v 2) Pxy(v 5)PyA(v1)PyA(v 3)
y
!

x
!

P(t) = e
Rt

Note the parameter gx in equation 12, which is the equilibrium frequency of state x.

Finally, the likelihood of the tree given the full alignment is

L = Li
i
∏ 	
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Equation 13

	
 where Li is the likelihood of position i.

To avoid the manipulation of exceedingly small values, it is much more convenient to compute the
log likelihood of a tree as follows:

lnL = lnLi
i
∑ 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Equation 14

 Much additional information can be found in the references given in the ‘Background’ Section
(Section 2) of this manual.

MetaPIGA 3.0 manual p59

10.	 Bibliography

1. Lemmon AR, Milinkovitch MC: The metapopulation genetic algorithm: An efficient solution for the problem of large
phylogeny estimation. Proc Natl Acad Sci U S A 2002, 99:10516-10521.

2. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T: trimAl: a tool for automated alignment trimming in large-scale
phylogenetic analyses. Bioinformatics 2009, 25:1972-1973.

3. Li W-H: Molecular evolution. Sunderland, MA.: Sinauer; 1997.
4. Gabaldon T: Large-scale assignment of orthology: back to phylogenetics? Genome Biol 2008, 9:235.
5. Tzika A, Helaers R, Van de Peer Y, Milinkovitch MC: MANTiS: a phylogenetic framework for multi-species genome

comparisons. Bioinformatics 2008, 24:151-157.
6. Milinkovitch MC, Helaers R, Depiereux E, Tzika AC, Gabaldon T: 2X genomes - depth does matter. Genome Biol 2010,

11:R16.
7. Thorne JL, Kishino H: Divergence time and evolutionary rate estimation with multilocus data. Syst Biol 2002,

51:689-702.
8. Thorne JL, Kishino H, Painter IS: Estimating the rate of evolution of the rate of molecular evolution. Molecular Biol-

ogy and Evolution 1998, 15:1647-1657.
9. Cassens I, Vicario S, Waddell VG, Balchowsky H, Van Belle D, Ding W, Fan C, Mohan RS, Simoes-Lopes PC, Bastida R,

et al: Independent adaptation to riverine habitats allowed survival of ancient cetacean lineages. Proc Natl Acad Sci U
S A 2000, 97:11343-11347.

10. Chang BS, Jonsson K, Kazmi MA, Donoghue MJ, Sakmar TP: Recreating a functional ancestral archosaur visual pig-
ment. Mol Biol Evol 2002, 19:1483-1489.

11. Chang BS, Kazmi MA, Sakmar TP: Synthetic gene technology: applications to ancestral gene reconstruction and
structure-function studies of receptors. Methods Enzymol 2002, 343:274-294.

12. Chang BS, Ugalde JA, Matz MV: Applications of ancestral protein reconstruction in understanding protein function:
GFP-like proteins. Methods Enzymol 2005, 395:652-670.

13. Blanchette M, Green ED, Miller W, Haussler D: Reconstructing large regions of an ancestral mammalian genome in
silico. Genome Res 2004, 14:2412-2423.

14. Williams PD, Pollock DD, Blackburne BP, Goldstein RA: Assessing the accuracy of ancestral protein reconstruction
methods. PLoS Comput Biol 2006, 2:e69.

15. Zhang J, Nielsen R, Yang Z: Evaluation of an improved branch-site likelihood method for detecting positive selection
at the molecular level. Mol Biol Evol 2005, 22:2472-2479.

16. Meegaskumbura M, Bossuyt F, Pethiyagoda R, Manamendra-Arachchi K, Bahir M, Milinkovitch MC, Schneider CJ: Sri
Lanka: an amphibian hot spot. Science 2002, 298:379.

17. Springer MS, Stanhope MJ, Madsen O, de Jong WW: Molecules consolidate the placental mammal tree. Trends Ecol
Evol 2004, 19:430-438.

18. Bossuyt F, Brown RM, Hillis DM, Cannatella DC, Milinkovitch MC: Phylogeny and biogeography of a cosmopolitan
frog radiation: Late cretaceous diversification resulted in continent-scale endemism in the family ranidae. Syst Biol
2006, 55:579-594.

19. Graham RL, Foulds LR: Unlikelihood that Minimal Phylogenies for a Realistic Biological Study Can Be Constructed
in Reasonable Computational Time. Math Bioscience 1982, 60:133-142.

20. Chor B, Tuller T: Maximum likelihood of evolutionary trees: hardness and approximation. Bioinformatics 2005, 21
Suppl 1:i97-106.

21. Felsenstein J: Inferring Phylogenies. Sunderland: Sinauer Associates Inc.; 2004.
22. Felsenstein J: Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolu-

tion 1981, 17:368-376.
23. Swofford DL, Waddell PJ, Huelsenbeck JP, Foster PG, Lewis PO, Rogers JS: Bias in phylogenetic estimation and its

relevance to the choice between parsimony and likelihood methods. Syst Biol 2001, 50:525-539.
24. Huelsenbeck JP, Larget B, Miller RE, Ronquist F: Potential applications and pitfalls of Bayesian inference of phy-

logeny. Syst Biol 2002, 51:673-688.
25. Holder M, Lewis PO: Phylogeny estimation: traditional and Bayesian approaches. Nat Rev Genet 2003, 4:275-284.
26. Salter LA, Pearl DK: Stochastic search strategy for estimation of maximum likelihood phylogenetic trees. Syst Biol

2001, 50:7-17.
27. Matsuda H: Protein phylogenetic inference using maximum likelihood with a genetic algorithm. In Pacific symposium

on biocomputing '96; London. Edited by Hunter L, Klein TE. World Scientific; 1996: 512-523.
28. Katoh K, Kuma K, Miyata T: Genetic algorithm-based maximum-likelihood analysis for molecular phylogeny. J Mol

Evol 2001, 53:477-484.
29. Lewis PO: A genetic algorithm for maximum-likelihood phylogeny inference using nucleotide sequence data. Mol

biol evol 1998, 15:277-283.
30. Zwickl DJ: Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under

the maximum likelihood criterion. The University of Texas, 2006.
31. Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003,

19:1572-1574.
32. Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed

models. Bioinformatics 2006, 22:2688-2690.
33. Suchard MA, Rambaut A: Many-core algorithms for statistical phylogenetics. Bioinformatics 2009, 25:1370-1376.
34. Tavaré S: Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences. American Mathematical

Society: Lectures on Mathematics in the Life Sciences 1986, 17:57–86.
35. Yang Z: Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approxi-

mate methods. J Mol Evol 1994, 39:306-314.

MetaPIGA 3.0 manual p60

36. Yang Z: Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolution 1996,
11:367-372.

37. Gu X, Fu YX, Li WH: Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide
sites. Mol biol evol 1995, 12:546-557.

38. Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.
Syst Biol 2003, 52:696-704.

39. Stamatakis A, Ludwig T, Meier H: RAxML-III: a fast program for maximum likelihood-based inference of large phy-
logenetic trees. Bioinformatics 2005, 21:456-463.

40. Maddison DR, Swofford DL, Maddison WP: NEXUS: an extensible file format for systematic information. Syst Biol
1997, 46:590-621.

41. Posada D, Crandall KA: Selecting the best-fit model of nucleotide substitution. Syst Biol 2001, 50:580-601.
42. Kirkpatrick S, Gelatt CD, Jr., Vecchi MP: Optimization by Simulated Annealing. Science 1983, 220:671-680.
43. Lundy M: Applications of the Annealing Algorithm to Combinatorial Problems in Statistics. Biometrika 1985,

72:191-198.
44. Holland J: Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press; 1975.
45. Goldman N, Yang Z: A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol

Evol 1994, 11:725-736.
46. Kosiol C, Holmes I, Goldman N: An empirical codon model for protein sequence evolution. Mol biol evol 2007,

24:1464-1479.
47. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biol-

ogy and Evolution 1987, 4:406-425.
48. Criscuolo A, Michel CJ: Phylogenetic inference with weighted codon evolutionary distances. J Mol Evol 2009,

68:377-392.
49. Huelsenbeck JP, Bollback JP: Empirical and hierarchical Bayesian estimation of ancestral states. Syst Biol 2001,

50:351-366.

MetaPIGA 3.0 manual p61

