
v3.0b0

Maximum likelihood large phylogeny estimation
using the metapopulation genetic algorithm (MetaGA)

& other stochastic heuristics

Manual version 3.1 (Feb 19, 2013)

Đorđe Grbić & Michel C. Milinkovitch
Lab. of Artificial & Natural Evolution (LANE),
Dept of Genetics & Evolution,
University of Geneva,
Switzerland

www.lanevol.org

Raphaël Helaers
Lab. of Human Molecular Genetics (GEHU)
de Duve Institute, UCLouvain,
B-1200 Brussels
Belgium

MetaPIGA 3.0 manual p1

http://www.lanevol.org
http://www.lanevol.org

TABLE OF CONTENTS
___1. In a nutshell! 3
___2. Background! 4

_________________________________3. The metaGA algorithm & MetaPIGA! 5
___4. The software MetaPIGA! 6

..4.1. Availability 6
..4.2. Recommended citations 6

................4.3. CPU, GPU, Operating Systems, and memory requirements 6
__5. Using MetaPIGA! 10

..5.1. Summary 10
..5.2. Launching MetaPIGA & opening a file 11

..5.3. [D] Dataset Settings 13
5.3.1 Overview 13
5.3.2 The ‘Dataset’ tab 14
5.3.3 The ‘Codons’ tab 16

...5.4. [A] Analysis Settings 18
5.4.1. The ‘Heuristic’ tab 18
5.4.2. The ‘Evaluation criterion’ tab 21
5.4.3. The ‘Starting tree(s)’ tab 24
5.4.4. The ‘Operators’ tab 25
5.4.5. The ‘Miscellaneous’ tab 27
5.4.6. Exiting the Settings Window 30

...5.5. [R] The Run window 31
...5.6. [T] The tree viewer 33

5.6.1. Viewing and evaluating trees 33
5.6.2. Ancestral states reconstruction 34

...................................5.7. Building and running batch files with the GUI 35
5.7.1. Transferring analysis settings among datasets 35
5.7.2. Duplicating datasets for batch files 35

...5.8. Building batch files manually 36
...5.9. The ‘Tools’ Menu 38

...5.10. Troubleshooting 39
__6. Acknowledgements! 40

______________________________7. Appendix 1: The MetaPIGA commands! 41
__________8. Appendix 2: Using the Stochastic Simulated Annealing (SSA) ! 53
__________9. Appendix 3: A simple introduction to ML phylogeny inference! 56

..9.1. Introduction 56
.......................................9.2. The General-Time-Reversible (GTR) Model 56

..9.3. Computing the likelihood of a tree 57
...10. Bibliography! 60

MetaPIGA 3.0 manual p2

1.	
 	
 	
 In	
 a	
 nutshell

	

 The development of heuristics implemented in robust application softwares has made large
phylogeny inference a key step in most comparative studies involving molecular sequences. The
choice of a phylogeny inference software is not only dictated by the raw performance (speed) of the
algorithm(s) and of its (their) implementation, the availability of complex substitution models, and
the accuracy of the resulting trees, but also by a combination of parameters pertaining to the ease-
of-use and the availability of specific functionalities.
	

 Here, we present the manual of MetaPIGA, a robust implementation of several stochastic
heuristics for large phylogeny inference (under maximum likelihood), including a Random-Restart
Hill Climbing, a Stochastic Simulated Annealing (SSA) algorithm, a classical Genetic Algorithm
(GA), and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution
models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA handles
nucleic-acid and protein datasets as well as morphological (presence/absence) data. The benefits of
the metaGA ([1] Lemmon & Milinkovitch 2002; PNAS, 99: 10516-10521) are as follows: (i) it
resolves the major problem inherent to classical Genetic Algorithms (i.e., the need to choose
between strong selection, hence, speed, and weak selection, hence, accuracy) by maintaining high
inter-population variation even under strong intra-population selection, and (ii) it generates branch
support values that approximate posterior probabilities.
	

 The software MetaPIGA also implements:
✓ Simple dataset quality control (testing for identical sequences and excessively ambiguous or

excessively divergent sequences);
✓ Automated trimming of poorly aligned regions using the trimAl algorithm [2];
✓ The Likelihood Ratio Test, Akaike Information Criterion, and Bayesian Information Criterion for

the easy selection of nucleotide and amino-acid substitution models that best fit the data;
✓ Ancestral-state reconstruction of all nodes in the tree;
✓ Codon models for the analysis of protein-coding nucleotide sequences;
✓ Faster Likelihood computation on Nvidia graphics cards;
✓ Automated stopping rules based on convergence statistics.
MetaPIGA provides high customization of heuristics’ and models’ parameters, manual batch file
and command line processing. However, it also offers an extensive and ergonomic graphical user
interface and functionalities assisting the user for dataset quality testing, parameters setting,
generating and running batch files, following run progress, and manipulating result trees.
	

 MetaPIGA uses standard formats for data sets and trees, is platform independent, runs in 32-
and 64-bits systems, and takes advantage of multiprocessor and/or multicore computers. Note
that MetaPIGA allows the use of the XtremWeb-CH infrastructure for distribution of multiple jobs
on a Grid.

	

 MetaPIGA is freely available to academics at www.metapiga.org and www.lanevol.org

MetaPIGA 3.0 manual p3

http://www.pnas.org/content/99/16/10516.full
http://www.pnas.org/content/99/16/10516.full
http://www.xtremwebch.net/
http://www.xtremwebch.net/
http://www.metapiga.org
http://www.metapiga.org
http://www.lanevol.org
http://www.lanevol.org

2.	
 	
 	
 Background

Phylogeny inference allows, among others, detecting orthology/paralogy relationships among
gene-family members (e.g., [3-6]), estimating divergence times and evolutionary rates (e.g., [7-9]),
reconstructing ancestral sequences (e.g., [10-14]), identifying molecular characters constrained by
purifying selection or which experienced positive selection (e.g., [15]), uncovering hidden
biodiversity (e.g., [16]), and mapping the evolution of morphological, physiological,
epidemiological, biogeographical, and even behavioral characters [17, 18]. Molecular phylogeny
inference is now a mature science, and an important part of the maturation process pertained to the
realization (since the late 1990’s) that the quest for the Holy Grail of THE absolute best tree should
be abandoned for a much more meaningful goal: the inference of clades and trees robustness. Still,
this objective remained intractable in practice because of (a) the NP-hard nature of optimality-
criterion-based phylogeny inference (i.e., no algorithm can solve it in polynomial time; [19, 20])
and (b) the large computing-time requirements when using complex substitution models (and rate
heterogeneity across sites) in the framework of what has been identified as the probable most robust
optimality criterion: Maximum Likelihood (ML; [21-23]; See Appendix 3 for an introduction to
ML). Today large phylogeny inference is incorporated, across biological disciplines, as an essential
step in most comparative studies involving nucleotide or protein sequences. This has been made
possible thanks to both theoretical and practical developments.

First, one key advance that made large phylogeny inference tractable is the implementation in
this field of stochastic heuristics with inter-step optimization, i.e., a family of approaches that
existed for decades in physics and computer science and explore multidimensional solution spaces
in a much more efficient manner than the older intra-step optimization hill-climbing methods.
Indeed, in the latter, one prime parameter (typically, the topology of the tree) is modified and all
other parameters are optimized before the new solution is evaluated whereas, in stochastic
heuristics, all free parameters are optimized while the search proceeds. Inter-step optimization
methods include Markov Chain Monte Carlo (MCMC) approximations of the Bayesian approach
[24, 25], stochastic simulated annealing [26], and genetic algorithms [1, 27-30]. The efficiency of
stochastic heuristics is quite counterintuitive but can be explained by several factors: (a) poorer
solutions are accepted with a non-null probability (contrary to hill-climbing that strictly restricts
moves toward better likelihood values) such that valleys in likelihood space can eventually be
crossed; and (b), parameters are not over-optimized (e.g., starting and intermediate trees are
generally largely sub-optimal, hence, optimizing model parameters on these trees is a clear example
of over-fitting). In addition, we think that avoiding over-optimization at every topology evaluation
generates a flatter likelihood-space shape, such that valleys are more easily crossed and local optima
more easily escaped. This suggestion however requires further investigation.

Second, several stochastic methods have been incorporated into robust application softwares.
The importance of that point should not be underestimated. For example, the success of Bayesian
methods is probably due as much to its incorporation into robust and efficient software (e.g.,
MrBayes; [31]) as to the theoretical appeal of generating marginal posterior probabilities [25]. The
software RaxML [32], enjoys deserved popularity because it is one of the fastest ML phylogeny
inference programs available to date (despite that it does not incorporate stochastic methods) thanks
to the implementation of approximations to rate heterogeneity across sites and smart computer
science tricks speeding up likelihood computation: optimized parallel code and ‘Subtree Equality
Vectors’ (i.e., the extension of character compression to the subtree level). Similarly, highly efficient
parallel code has recently been implemented for the evaluation of phylogenies on graphics
processing units (GPUs), resulting in 10 to 100-fold speed increase over an optimized CPU-based
computation [33]. This efficient use of new hardware, existing stochastic heuristics (in this case, an
MCMC approach in a Bayesian framework), and smart code parallelization for efficient harnessing
of the hundreds of GPU processing cores allowed the authors to use a 60-state codon model on a

MetaPIGA 3.0 manual p4

dataset of 62 complete mitochondrial genomes. Note that MetaPIGA now implements GPU
computation (since version 3.0b0).

The availability of multiple excellent softwares implementing different robust heuristics is
clearly an asset for the end user: reliable results might be identified because they remain stable
across softwares and methods. However, many users chose one single main software for their
analyses, and this choice is sometimes dictated by availability of functionalities of importance (e.g.,
batch analyses, GTR nucleotide substitution model [34] and rate heterogeneity [35-37], possibility
to partition data) but that do not pertain to the performances of the specific heuristic implemented.
Finally, given that the need to infer large trees is critical in multiple biological disciplines, the non-
specialist can be baffled by the large number of available heuristics, parameters, and softwares, such
that the most user-friendly tools are sometimes preferred even if more robust or more efficient (but
less user-friendly) softwares are available.

There is therefore a challenge to supply softwares that are both easy to use for the non-
specialist, provide flexibility for the specialist, and allow fast and robust inference for both. We
hope MetaPIGA version 3 provides a solution to this conundrum.

3.	
 	
 	
 The	
 metaGA	
 algorithm	
 &	
 MetaPIGA

The Metapopulation Genetic Algorithm (MetaGA; [1]) is an evolutionary computation
heuristic in which several populations of trees exchange topological information which is used to
guide the Genetic Algorithm (GA) operators for much faster convergence. Despite the fact that the
metaGA had initially been implemented in a simple and unoptimized software (metaPIGA-v1)
together with simple nucleotide substitution models, an approximate rate heterogeneity method, and
only a low number of functionalities, it has been suggested as one of the most efficient heuristics
under the ML criterion. Furthermore, multiple metaGA searches provide an estimate of the posterior
probability distribution of trees [1].
	

 The metaGA resolves the major question inherent to classical GA approaches: should
one use a soft or a stringent selection scheme? Indeed, strong selection produces good solu-
tions in a short computing time but tend to generate sub-optimal solutions around local op-
tima. Conversely, mild selection schemes considerably improve the probability to escape local
optima and find better solutions, but greatly increase computing time. As the metaGA involves
several parallel searches, initial inter-population variation can be very high (especially if ran-
dom or pseudo-random starting trees are used), and somewhat maintained during the search,
even under extreme intra-population selection.
	

 Although the metaGA has been shown to perform very well [1, 38, 39] it initially did not im-
plement complex substitution models, discrete Gamma rate heterogeneity, and the possibility to par-
tition data. Here, we present MetaPIGA version 3, a program in which we performed such an im-
plementation, both for nucleotide and protein data, together with a hill climbing, a classical Genetic
Algorithm (GA), and a Stochastic Simulated Annealing (SSA) algorithm. MetaPIGA version 3 also
implements dataset quality control, automated trimming of poorly aligned regions, criteria (Likeli-
hood Ratio Test, Akaike Information Criterion, and Bayesian Information Criterion) for the easy
selection of nucleotide and amino-acid substitution models that best fit the data, ancestral-state re-
construction of nodes, Codon models for the analysis of protein-coding nucleotide sequences, faster
Likelihood computation on Nvidia graphics cards, and automated stopping rules based on conver-
gence statistics. MetaPIGA can also be parallelized on a Grid of computers.
	

 MetaPIGA gives access both to high parameterization, as well as to an ergonomic interface
and functionalities assisting the user for sound inference of large phylogenetic trees.

MetaPIGA 3.0 manual p5

4.	
 	
 	
 The	
 software	
 MetaPIGA

4.1. Availability
The software MetaPIGA is freely available to academics at www.metapiga.org , and is avail-

able for Windows, Mac OSX, and Linux. Note that, each time you launch MetaPIGA, it checks for
the availability of updates. MetaPIGA will always request your authorisation to perform such an
update. This manual is also available in the MetaPIGA help menu.

Disclaimer. MetaPIGA is provided without warranty of any kind. The authors and their institutions do not warrant guarantee, or
make any representation regarding the use or the results of the program or manual in terms of their correctness, reliability, or other-
wise. In no case will the authors and their respective institutions be liable for any direct, special, indirect, incidental, consequential,
or other damages arising from using the metaGA and/or any version of MetaPIGA and/or this manual and/or any supporting material.
MetaPIGA is freely available only to Academics. If you are working for a commercial company and are planning to use MetaPIGA,
please, contact michel.milinkovitch -at- unige.ch

4.2. Recommended citations
The Consensus Pruning (CP) and the Metapopulation Genetic Algorithm (metaGA) were

originally described in the first reference below, whereas the version 2 of MetaPIGA (the software
implementing the MetaGA and other heuristics) is described in the second. Hence, we would be
grateful if you could cite these two references when publishing results produced with MetaPIGA
version 3.

✓ Lemmon A.R. & M. C. Milinkovitch
The metapopulation genetic algorithm: an efficient solution for the problem of large phylogeny
estimation
Proceedings of the National Academy of Sciences (PNAS), USA, 99: 10516-10521 (2002)

✓ Helaers R. & M. C. Milinkovitch
MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic
algorithm and other stochastic heuristics
BMC Bioinformatics 2010, 11: 379

4.3. CPU, GPU, Operating Systems, and memory requirements
CPU & Operating Systems. As optimality-criterion phylogeny inference in general, and ML

inference in particular, is a computer intensive endeavour, fast CPUs are always preferable, even
when using powerful heuristics such as MC3 or the metaGA. Using a ranid frog dataset (provided
with the software as one of the example datasets) of 64 taxa X 1976 nucleotides each, a typical
metaGA run (4 populations of 4 individuals, and default parameter values) will take approximately
2 minutes to complete under a simple model (Jukes-Cantor) and about 20 minutes under a complex
model (GTR + gamma distributed rate heterogeneity) on a single core of a 2.27 GHz Intel Xeon
processor (you can easily reduce running time by distributing replicates on several cores, see be-
low). Hence, when using datasets of over 100 taxa and when performing replicates (to estimate pos-
terior probabilities of clades; see below), you should expect runs to last several hours. If you are
experienced in the use of MrBayes [31], take as a rule of thumb that a thorough analysis using the
MetaGA requires a running time similar to that of using MrBayes with the same dataset.

MetaPIGA is written in Java 1.6 such that the single code runs on 32 and 64-bits platforms
under MacOS X, Linux, and Windows. We use the Java Multi-Threading technology to take advan-
tage of multiprocessor and/or multicore computers, such that some tasks can be run in parallel. As
replicates are independent, they are particularly prone to parallelization: different replicates can be
assigned to any number of different processor cores (typically 4 - 12 in most 2013 machines). In
addition, the metaGA heuristic itself is well suited to parallel implementation because many proc-

MetaPIGA 3.0 manual p6

http://www.metapiga.org
http://www.metapiga.org
http://www.pnas.org/content/99/16/10516.abstract
http://www.pnas.org/content/99/16/10516.abstract
http://www.biomedcentral.com/1471-2105/11/379/abstract
http://www.biomedcentral.com/1471-2105/11/379/abstract

esses (mutations, selection, and likelihood computation) are independent across populations. Hence,
different metaGA populations can be distributed to different processor cores. Parallelization of
metaGA populations can be combined with parallelization of replicates (e.g., 16 cores allow run-
ning simultaneously 4 metaGA replicates with 4 populations treated simultaneously at each repli-
cate). Note that distributing different replicates to different cores is more efficient (in terms of com-
putation speed-up) than distributing different populations to different cores1. Hence, parallelization
of populations usually increases running speed by about 0.3n whereas parallelization of replicates
increases running speed by almost n (where n= the number of CPU cores you assigned to
MetaPIGA).

 Computing on GPU (Graphics cards). Analyses of protein or codon datasets are particu-
larly long because of the high number of possible state substitutions (20x20 for amino-acid data;
64x64 for Codon data). In such cases, performance can be substantially increased if likelihood
computation is performed on GPUs (Graphics processing units), also called ‘Graphics cards’. These
are devices that provide fine-grained parallelization. MetaPIGA version 3 can run on CUDA-
capable graphics cards from Nvidia Corporation. The graphics card’s compute capability has to be
at least 2.0. The list of CUDA-capable graphics cards can be found on the following web site:
https://developer.nvidia.com/cuda-gpus. Note that the performances of GPUs are low for nucleotide
sequence data, substantial for protein sequence data, and spectacular for codon sequence data.

In order to make use of the available supported graphics card, appropriate CUDA drivers have to be installed. The drivers
and the installation instructions can be found on the following web site:
https://developer.nvidia.com/cuda-toolkit-42-archive. Be sure to install the 4.2 Toolkit version and the drivers that come
with that version of the CUDA Toolkit. MetaPIGA v.3 hasn’t been tested on the newer versions of the CUDA Toolkit.
If you’re using a Linux distribution with graphics card, prior to launching MetaPIGA, you must set the environment vari-
able that points to the CUDA library, like this:

export LD_PRELOAD={path to the CUDA library}:$LD_PRELOAD
Where {path to the CUDA library} points to the ‘libcuda.so’ CUDA library.
For example on one of our machines this variable setting looks like this:
export LD_PRELOAD=/usr/lib/nvidia-current/libcuda.so:$LD_PRELOAD

	

For best performances, the graphics card must have enough built-in memory (see the ‘memory’
sections below).

The Grid. If you are a user of the XtremWeb-CH infrastructure, you can use a Grid to per-
form your data analysis with coarse grained parallelization. This means that different replicates are
computed on the different worker computers on the Grid. If you have 100 computers on your grid,
your analysis will be about 100 times faster.

In order to use the grid, first you have to have an account on the XWCH. After you make an account, you have to ask the
XtremWeb-CH support to connect a MetaPIGA module to your account. When the MetaPIGA module is ready, you have to
upload the MetaPIGA binaries to your MetaPIGA module. Provided with MetaPIGA is a small program that uploads these
binaries to the grid. This program is available in the MetaPIGA base folder on your computer in the subfolder
‘XWCH_bin_uploader’. You will have to provide the ‘MetaPIGA 3.jar’ that is in the base MetaPIGA folder, your user
identification number, the grid server address, and the MetaPIGA module ID. These informations can be found in your
XtremWeb-CH interface. If you can’t find them, consult with the XtremWeb-CH project people. Note that, every time
MetaPIGA is updated, you will have to upload the binaries again in order to have the latest version of the MetaPIGA on the
grid. For the user documentation, please, refer to the following web site:

http://www.xtremwebch.net/mediawiki/index.php/How_use

Memory. Computing and storing the likelihood of large trees require large amounts of
Random-Access Memory (RAM). Note that 32-bits systems can allocate a maximum of ~2Gb of
memory to the Java Virtual Machine (JVM), whereas 64-bits systems are limited only by the
amount of memory installed on the computer (the theoretical limit is 16 billions gigabytes). The

MetaPIGA 3.0 manual p7

1 Indeed, under CP, different populations of a single metaGA search must exchange topological information, hence, the
running time at each generation is limited by the population which is slowest to complete. On the other hand, different
replicates are totally independent.

http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-toolkit-42-archive
https://developer.nvidia.com/cuda-toolkit-42-archive
http://www.xtremwebch.net/
http://www.xtremwebch.net/
http://www.xtremwebch.net/mediawiki/index.php/How_use
http://www.xtremwebch.net/mediawiki/index.php/How_use

equation below allows calculating the number of Giga-bytes of free RAM (i.e., RAM that must be
available when your OS is running) you will need for using MetaPIGA:

 RAM (Gb) =
Tr ⋅ N ⋅ D ⋅C ⋅ S ⋅ Pr ⋅ 4

10243

where Tr is the number of trees used at each generation, N is the number of nodes in the tree (=2T-1,
where T is the number of taxa), D is the number of data patterns2, C is the number of discrete cate-
gories of the gamma distribution (typically, 4), and S is the number of possible character states
(S=4, S=20, and S=64 for DNA, protein, and Codon characters, respectively). Pr is the number of
CPU cores assigned to the parallelization of replicates: doubling the number of CPU cores assigned
to different replicates doubles the speed of the search but also doubles the amount of required
RAM.

The number of trees (Tr) used at each generation by MetaPIGA depends on the heuristic chosen:
✓ Tr = 3 for ‘Hill Climbing’ (HC) and for ‘Simulated Annealing’ (SA);
✓ Tr = I+1 for the ‘Genetic Algorithm’ (GA) under ‘Improve’, ‘Replacement’, and ‘Keep the best’ selection

schemes;
✓ Tr = I*2+1 for the ‘Genetic Algorithm’ (GA) under ‘Tournament’, and ‘Rank’ selection schemes;
✓ Tr = P*I+1 for the ‘Metapopulation Genetic Algorithm’ (MetaGA) under ‘Improve’, ‘Replacement’, and ‘Keep

the best’ selection schemes;
✓ Tr = (P+1)(I+1) for the ‘Metapopulation Genetic Algorithm’ (MetaGA) under ‘Tournament’, and ‘Rank’ selec-

tion schemes with one CPU core;
✓ Tr = (2P)(I+1) for the ‘Metapopulation Genetic Algorithm’ (MetaGA) under ‘Tournament’, and ‘Rank’ selection

schemes with more than one CPU core;
P is the number of populations and I is the number of individuals per populations.

For example, using a computer with 4 CPU cores, and using the metaGA (with ‘Improve’ Selection)
with 4 populations of 4 individuals, and rate heterogeneity with 4 Gamma-rate categories on a DNA
dataset of 120 taxa and 4000 nucleotides (hence, about 2500 data patterns, although that number
can vary, depending on each specific dataset), will require about:

a. 2.4 Gb of RAM for a single core assigned to each replicate but 4 cores assigned to 4 simul-
taneous replicates;

b. 1.2 Gb of RAM for 2 cores assigned to each replicate and 2 cores assigned to 2 simultaneous
replicates.

Note that option a. will be significantly faster than option b. Also note that:
✓ The amount of RAM computed above is a lower bound as the storage of the dataset itself can

take a few hundreds Mb;
✓ An estimate of the amount of RAM necessary for your analysis is indicated in the parameter

summary panel of the main window (Fig. 2) as well as in the lower-left corner of the ‘Analysis
settings’ window (Fig. 9 to 18), on the basis of the parameters you have chosen in that same

MetaPIGA 3.0 manual p8

2 A data pattern is an aligned column with a specific combination of states. One pattern can occur several times within
the same dataset. For example, the character columns 1, 8 & 9 below are identical, hence, their likelihoods are identical
and must be computed only once (but used three times for computing the joint likelihood). Similarly, characters 3 & 7
are identical. The example dataset below exhibits 9 characters but only 5 patterns. The number of data patterns is indi-
cated in the ‘MetaPIGA data matrix’ tab (see Fig. 3)

 Character-->1 2 3 4 5 6 7 8 9 Pattern --> 1 2 3 4 5
Taxon1 A G T G C C T A A Taxon1 A G T G C
Taxon2 A G T G C C T A A Taxon2 A G T G C
Taxon3 T T T G C C T T T -> Compress -> Taxon3 T T T G C
Taxon4 T T T G C C T T T Taxon4 T T T G C
Taxon5 T - T G C C T T T Taxon5 T - T G C
 Pattern --> 1 2 3 4 5 5 3 1 1 Weight --> 3 1 2 1 2

window. In both windows, the estimate turns red if you exceed the amount of memory you allo-
cated to MetaPIGA.

As indicated in Figure 1a, you can choose the amount of RAM assigned to MetaPIGA in the menu:
‘Tools’ ➙ ‘Memory Settings’). You will be prompted by the program to do so if you experience an
out-of-memory error during the use of MetaPIGA. The amounts of memory assigned, used, and
available can be found in the menu ‘Help’ ➙ ‘System informations’ (Fig. 1b).

Fig. 1: The metaPIGA (a) Memory Settings and (b) System Information windows

 Graphics card memory. For best performances, the graphics card must have enough built-in
memory. To calculate the minimum amount of memory in megabytes, use the following formula:

RAMopt

GPU (Mb) =
12 ⋅C ⋅ D ⋅ S + 8 ⋅C ⋅ D + 16 ⋅C ⋅ S 2 + 8 ⋅C + 12 ⋅ D + 16 ⋅ S 2 + 16 ⋅ S

10242
.

Where D is the number of data patterns (see above), C is the number of discrete categories of the
gamma distribution (typically, 4), and S is the number of possible character states (S=4, S=20, and
S=64 for DNA, protein, and codon sequences respectively).
If the amount of available memory is less than that computed above, MetaPIGA will have to split
the data into pieces before sending it to the GPU, which in turn degrades the performances of the
GPU. To calculate the minimum of built-in GPU memory needed, use the following formula:

RAM min

GPU (Mb) =
8 ⋅C + 12 ⋅ D + 8 ⋅C ⋅ D + 16 ⋅ S + 384 ⋅C ⋅ S + 16 ⋅ S 2 + 16 ⋅C ⋅ S 2

10242
.

MetaPIGA 3.0 manual p9

5.	
 	
 	
 Using	
 MetaPIGA

5.1. Summary
	

 MetaPIGA uses standard formats: reading and writing datasets in Nexus format [40] and trees
in Newick format. Note that aligned datasets in Fasta format can also be imported in MetaPIGA. All
search settings can be saved in a metaPIGA block incorporated into the Nexus file, allowing easy
management and runs on distant servers. A Nexus file without a metaPIGA block will be correctly
interpreted by MetaPIGA and will run with default parameters (but it will skip other programs
blocks such as ‘Paup’ or ‘Assumptions’ blocks). Note that the command “Endblock” often used in
Paup data files is not a standard Nexus command and will not be recognized by MetaPIGA (please,
use the standard Nexus command “END” instead). The minimum requirements are a DATA block
(defining the datatype, the number of taxa and the number of characters), including a MATRIX com-
mand (i.e., with the sequence data; if the matrix is in interleave form, please, indicate it in the DATA
block) with each sequence beginning with the sequence name separated from the sequence itself by
at least one space. Standard ambiguity characters are accepted (see below) and missing data (de-
fined by the ‘MISSING’ command; default is ‘?’) are automatically converted to ‘N’ (nucleotide se-
quences) or ‘X’ (amino-acid sequences). Gaps (defined by the ‘GAP’ command; default is ‘-’) can be
removed (with the corresponding character in other taxa) or treated as ‘N’ (see Section 5.3).

Example of Nexus file with nucleotide data.
#NEXUS
BEGIN DATA;
	

 DIMENSIONS NTAX=5 NCHAR=12;
	

 FORMAT DATATYPE=DNA interleave
	

 MISSING=? GAP=- ;
MATRIX
mysequence_T1 AGTGCCTGATTG
mysequence_T2 AGTGCCTGATCG
mysequence_T3 TTTGCCTG---G
mysequence_T4 TTTGCCTAATCG
mysequence_T5 T-TGCCTAATCG
;
END;

The standard ambiguity code for DNA sequences.

M = A or C
V = A or C or G (not T)
R = A or G
H = A or C or T (not G)
W = A or T
D = A or G or T (not C)
S = C or G
B = C or G or T (not A)
N = A or C or G or T

Example of Nexus file with protein data.
#NEXUS
BEGIN DATA;
	

 DIMENSIONS NTAX=5 NCHAR=12;
	

 FORMAT DATATYPE=PROTEIN interleave
	

 MISSING=? GAP=- ;
MATRIX
mysequence_S1 QSGT
mysequence_S2 RSGT
mysequence_S3 P-GK
mysequence_S4 RLGK
mysequence_S5 RLG-
;
END;

The standard ambiguity code for PROTEIN se-
quences.

B = N or D
Z = Q or E
J = I or L
X = any amino-acid

	

 MetaPIGA can be run in command line (cf. end of ‘Section 5.2’, then jump directly to Sec-
tions 5.7 and 5.8 as well as Appendix 2), but it also offers an extensive graphical user interface
(GUI) for access to:

✓ Dataset setting (Fig. 4-9) : defining and managing charsets; including/excluding taxa, characters,
and charsets; defining and managing dataset partitions; changing nucleotide sequences to codon
sequences and vice versa;

MetaPIGA 3.0 manual p10

http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html

✓ Analysis settings (Fig. 10-18): choosing and customizing heuristics; defining substitution models
and their parameters; choosing starting-tree options; controlling operators; defining stop criteria
and replicates, managing multi-core processing.

All settings are associated with an interactive ‘mouse-over’ help system such that, if you are an
experienced phylogeneticist, you probably don’t need this manual much ;).
	

 MetaPIGA implements simple dataset quality controls (testing for the presence of identical
sequences and for excessively ambiguous or excessively divergent sequences) and automated trim-
ming of poorly aligned regions using the trimAl algorithm [2]. MetaPIGA also implements statisti-
cal methods for selecting substitution models that best fits the data ([41]; and refs therein): the
Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion.
	

 The MetaPIGA GUI provides a detailed run window showing graphs specific to the corre-
sponding heuristic. For example,, for a metaGA search with replicates, the run window shows: (i)
the current best likelihood progression of each population and (ii) the current topology, posterior
probability values, and average branch lengths of the consensus tree.
	

 Batch files are particularly useful for running sequentially a single data set under multiple dif-
ferent settings or several datasets with the same settings. MetaPIGA supports the use of batch files
that can be either written manually (see Section 5.8) or generated using tools available in the GUI
(see Section 5.7): datasets and their settings can be duplicated, settings can be “stamped” from one
dataset to another, and multiple combinations of datasets and settings can be saved in a batch file
that can be run either in the GUI (with various graphical information on search progress) or using
command line.
	

 Input and result trees are manipulated in Newick format, but visualized graphically in the
GUI, and can be exported for other programs. MetaPIGA also integrates a Tree Viewer that allows
viewing, re-rooting, and printing trees as well as computing the likelihood of any tree (under any
available substitution model) and optimizing its model parameters. Five other tools are imple-
mented: a Tree Generator (using the starting tree settings), an Ancestral State Reconstruction
viewer (associated with the Tree Viewer), a Consensus Builder (using user-trees and/or trees saved
in the ‘Tree Viewer’), a tool for computing Pairwise Distances, and a Memory Settings tool defin-
ing the maximum amount of memory allocated to the program. See section 5.9 for details.

5.2. Launching MetaPIGA & opening a file
	

5.2.1. Loading a file
Double-clicking a ‘.nex’ file (on Windows and Mac OS X) launches MetaPIGA and opens the
Nexus file. If it does not, launch MetaPIGA by double-clicking the application icon and open your
NEXUS (or FASTA) file by clicking on the ‘Load Nexus file’ button (Figs. 2 & 3) or by select-
ing in the menu: ‘File’ ➙ ‘Load a Data File (Nexus or Fasta format)’. Several Nexus files can be
loaded sequentially using the Load Nexus File button/command but multiple files can also be
dragged and dropped from the OS navigator to the left panel of the MetaPIGA main window (Fig.
2). The upper-right and lower-right panels of the main window indicate the parameters and the data
matrix, respectively, obtained from the corresponding Nexus/Fasta file (Fig. 2). The entry window
gives access to a second tab (arrow in Fig. 2) that shows the compressed data matrix and indicates
the number of data patterns and base frequencies.
5.2.2. Data quality control & alignment trimming
Hitting the ‘scissor’ button (Fig. 2) in the center of the main window will successively launch
quality tests for:
✓ The presence of excessively ambiguous sequences: sequences with >40% ambiguities (gaps and

N/X) will be detected and will be proposed to be automatically removed.

MetaPIGA 3.0 manual p11

✓ The presence of redundant sequences: groups of identical sequences will be detected and only
one sequence (with the lowest number of ambiguities) will be kept for each such group3.

✓ The presence of excessively divergent sequences: if sequences generating large uncorrected
pairwise distances (85% for proteins, 65% for nucleotide data, and 45% for standard binary data)
are detected, a warning is given, suggesting to remove these sequences and to subsequently rea-
lign the dataset. MetaPIGA does not perform alignment, so you’ll have to realign your sequences
using an alignment software such as ClustalW or CodonCode Aligner.

✓ Automated trimming of poorly aligned regions using the trimAl algorithm [2]: excessively
gapped and/or divergent positions are put in a charset of excluded characters (but they can be
easily re-included in the ‘Dataset settings’, see section 5.3).

Each of these 4 tests is also separately accessible in the 'dataset' menu.
	

 The trimAl algorithm has not yet been implemented for codon sequences in the MetaPIGA
version 3.0.

Fig. 2: The MetaPIGA main window with three loaded datasets and the ‘ranoidea_1b’ dataset selected. The arrows
indicate the memory required for running that dataset (under the current settings), the central button for data quality
control & alignment trimming, and the second tab giving access to the compressed dataset, number of data patterns,
and base frequencies.

MetaPIGA 3.0 manual p12

3 Ambiguities are considered as such during comparisons of sequences. For example, in the dataset below, there are two
groups of identical sequences (seq.1+2+3 and seq.4+5). After running the test, MetaPIGA keeps, within each group,
only the sequences with the lowest number of ambiguities (sequences 1 and 4).

Sequence1 A G T G C C N G A!
Sequence2 A G Y G C C T R A!! ! Sequence1 A G T G C C N G A
Sequence3 A N T N C - T G A! --->! Sequence4 T T T G C C T - T
Sequence4 T T T G C C T - T
Sequence5 T - - G C C T A T

The icons in the upper-left cor-
ner of the window (Fig. 3) are
shortcuts to the main com-
mands from the ‘File’,
‘Search’, ‘Batch’, and ‘Tools’
menus. Most of these functions
are self-explanatory and are
associated with an interactive
‘mouse-over’ help system. We
will however discuss below the
major functionalities. Most
commands can be called using
a short-cut of type ‘Ctrl/Cmd+letter’ (e.g., ‘Ctrl/Cmd+L’ for opening a Nexus or Fasta file).

NOTE: COMMAND LINE LAUNCH. It is particularly useful to launch MetaPIGA in command line if you want to
send jobs to a distant server. You must use the ‘mp_console’ executable (and not ‘MetaPIGA’). Simply type the com-
mand “mp_console” with the following arguments:

✓ [noupdate] : MetaPIGA will not check the MetaPIGA download server for an update;
✓ [nogui] : MetaPIGA will run without graphical interface (but textual progress), executing all files given in argument.
✓ [width=] : set the console width (default = 80). Necessary for progress bar display without GUI.
✓ [silent] Launches MetaPIGA without any GUI or text progress.
✓ [aFilename] : The Nexus/Fasta file that will be opened by MetaPIGA and executed if [nogui] is set. If several file-

names are given, they will be run sequentially as a batch.
For example, to run sequentially two nexus files ‘file1.nex’ and ‘file2.nex’ withtout GUI under Windows, type:
“mp_console.exe noupdate nogui file1.nex file2.nex”
Refer to ‘Section 5.8’ on how building batch files manually, and to ‘Appendix 2’ for the full list of MetaPIGA com-
mands that can be incorporated in Nexus files.

5.3. [D] Dataset Settings
5.3.1 Overview
	

 The dataset settings are accessed by clicking on the button or by selecting in the menu:
‘Dataset’ ➙ ‘Dataset settings’. This window allows to:

✓ define and manage charsets;
✓ include/exclude taxa, characters, and charsets;
✓ define and manage dataset partitions;
✓ define outgroup sequences;
✓ define a range of Codons inside a nucleotide sequence.

This window is divided into two tabs. The first tab (Dataset) handles charsets, partitions, outgroups,
and excluded taxa. The second (Codons) allows defining Codon characters in nucleotide sequences.
	

 The corresponding window for the ‘ranoidea_1b.nex’ file is shown below (Fig. 4). The 7 out-
group taxa and the 10 charsets were predefined (hence, recognized by the program) in the nexus file
using a metaPIGA block as highlighted in green below. See Appendix 2 for the full list of
MetaPIGA commands.
#NEXUS
BEGIN DATA;
!DIMENSIONS NTAX=111 NCHAR=3679;
!FORMAT DATATYPE=DNA interleave MISSING=? GAP=- ;
MATRIX
The data matrix is here in interleaved format
;
END;
BEGIN METAPIGA;

Fig. 3: The MetaPIGA main functionalities icons. These functionalities
(and others) are also available through the ‘File’, ‘Dataset’, ‘Search’,
‘Batch’, and ‘Tools’ menus. Between brackets: shortcut command letters.

MetaPIGA 3.0 manual p13

charset name=RAG1 set{1-555};
charset name=rhod1 set{556-870};
charset name=rhod4 set{871-1045};
charset name=Tyr set{1046-1579};
charset name=12V16 set{1580-3080};
charset name=16S set{3081-3679};
charset name=RAG_AmbigAlign set{67-84};
charset name=Tyr_AmbigAlign set{1211-1228};
charset name=12V16_Ambigalign set{1610-1615 1671-1684 1721-1762 1784-1801 1817-1867
! 1892-1900 1911-1915 1953-1999 2048-2055 2070-2086 2107-2116 2128-2199 2208-2219
! 2237-2262 2287-2304 2308 2324-2332 2349-2352 2363-2370 2378-2390 2411 2431-2454
! 2567-2611 2673-2700 2722-2728 2742-2831 2864-2884 2900-2988 3022-3080};
charset name=16S_AmbigAlign set{3090-3103 3128-3136 3149-3158 3318-3398 3438-3507
! 3513-3527 3649-3679};
outgroup {1004NesTho 0986DenAur 1052HylAre 0987PhrVen 1006CerOrn 1082LepMel! 1037Telsp.};

end;

All commands can be performed with the GUI (instead of using commands in the Nexus file) as de-
scribed below.

5.3.2 The ‘Dataset’ tab
	

 Use the >> and << but-
tons to (i) transfer taxa in and
out of the outgroup, (ii)
exclude/include taxa, (iii)
consider/disregard pre-defined
charsets as partitions, and (iv)
include/exclude character sets
from the analysis. Character
sets (‘charsets’) can be defined
and managed using the inter-
face (see below). In Fig 4, one
taxon and four charsets were
excluded manually. The
‘Charset viewer’ button allows
selecting and visualizing any of
the charsets (highlighted in the
full dataset). Clicking on the
‘Define new charset’ button
opens a window for selecting characters to include in the new charset. Multiple selections can be
performed with the mouse (and shift/ctrl/cmd keys depending on your OS) or a range selection tool.

Fig. 5: The selection tool for defining new character sets. Select the characters to be included in the charset and click

Fig. 4: The ‘Dataset settings’ window.

MetaPIGA 3.0 manual p14

In the first example (Fig. 5), a set of 9+4+7 characters have first been selected with the mouse, then
added to the charset under construction by using the ‘Add selection’ button (red arrow in Fig. 5).
That button can be used multiple times to sequentially add different sets of characters to your new
charset. Once a selection has been added, its colour is changed to avoid any ambiguity. Once click-
ing the ‘SAVE’ button, you will have to supply a name (here, we used ‘MYCHARSET’) for the new
charset and it will appear in the list of available charsets (Fig. 7).
	

 Note that a charset can also be
selected using the range selection tool
as in this second example (Fig.6)
where nucleotides between position 1
and 300 have been selected every
three positions. This allows for exam-
ple to easily define 1st, 2nd, and 3d po-
sitions in a protein-coding sequence.
The mouse selection tool (Fig. 5) and
the range-selection tool (Fig. 6) can
be used in combination. If your data-
set is exclusively made of in-frame
protein-coding nucleotide sequences,
quick definition of first, second, and
third positions can be performed using
the ad-hoc ‘Define pos 1,2,3’ button in
the ‘Dataset settings’ (Fig. 4).
	

 Charsets can then be excluded/
included from the analysis or
considered/disregarded for data parti-
tioning. In the example in Fig. 7, we
have 7 taxa in the outgroup, 1 ex-
cluded taxon, 11 charsets of which 4
are excluded (in the present case,
these are ambiguously aligned posi-
tions for different genes, hence, it was
chosen to remove them from the
analysis), and 3 partitions: ‘16S’,
‘MY_CHARSET’, All other non-excluded
characters (automatically grouped into
a virtual charset named “REMAIN-
ING”)4.
	

Gaps. The user can choose to remove,
before the analysis is performed, ei-
ther all columns with at least one gap,
or at least one gap or one ‘N’ (‘A’ or
‘C’ or ‘G’ or ‘T’).

Fig. 6: Defining a character set with the range-selection tool.

Fig. 7: The ‘Dataset’ window after defining the new charset
(‘MY_CHARSET’) and partitioning of the data.

MetaPIGA 3.0 manual p15

4We assume that all partitions evolve on the same topology, but all other parameters (base freq, substitution matrix rates, shape pa-
rameter of γ-distr, and proportion of invariable sites Pinv) are estimated and optimized separately for each partition. Among-partition
rate variation parameters are introduced in the likelihood equation as a factor that modifies branch lengths for the corresponding par-
tition. Branch lengths are optimized as usual, but the relative rates of partitions are optimized separately (with the constraint that the
weighted average of among-partitions rates is 1; weighting is according to each partition’s size). See Appendix 3 for details.

5.3.3 The ‘Codons’ tab
	

 The codon tab consists of a codon range viewer and two buttons that are used for codon range
definition. Codons are indicated with black letters on a light green background. The remaining of
the dataset is colored inversely
(Fig. 8). Pressing the ‘Make
codons’ button will open the
codon maker window where
you can define (i) the range of
the coding sequence and (ii)
the genetic code you wish to
use (i.e., The Universal Code,
the Vertebrate Mitochondrial
Code, etc., see below). The
range of coding sequences can
be defined by manually picking
the first position in the dataset
and pressing the ‘Set as first po-
sition’ button in the ‘Pick posi-
tion’ tool in the upper left corner
of the window (Fig. 9, highlight
a). Similarly, pick the last posi-
tion in the dataset and press the
‘Set as last position’ button. Al-
ternatively, define the range by
entering the indexes of the first
and the last positions in the top
middle part of the window (Fig.
9, highlight b). Note that the
first and last positions must de-
fine a range corresponding to a
multiple of 3 nucleotides. If this
is not the case,, the codon maker will trim the range to the closest smaller third nucleotide position.
Also, note that if some of the codons are either stop codons or ambiguous codons, the codon maker
will exclude the corresponding codons and a warning will pop up. Important: The nucleotides out-
side of the defined range of codons will be ignored during subsequent analyses. If you have charsets
defined before the translation to the codons, these charset will be available only if they are compati-
ble with the codon range. These incompatible charsets will become available again as soon as you
revert to the nucleotide character mode (see below). If you are saving a codon range to a nexus file,
the incompatible charsets will not be saved.
The genetic codes (for codon translation) available in the drop-down menu (Fig. 9c) are:
✓ The Universal Code;
✓ The Ciliate, Dasycladacean and Hexamita Nuclear Code;
✓ The Echinoderm and Flatworm Mitochondrial Code;
✓ The Euplotid Nuclear Code;
✓ The Invertebrate Mitochondrial Code;

Fig. 8: The ‘Codons’ tab after defining the codon range within the
sequence. The Codon range is marked with the green background.

Fig. 9: The codon maker. Tools for defining codon range (a and b), the
drop-down menu for selecting a DNA code (c), and the range of
nucleotides selected as codons (d, in purple) are indicated.

MetaPIGA 3.0 manual p16

✓ the Mold, Protozoan, Coelenterate Mitochondrial & The Mycoplasma/Spiroplasma Code;
✓ The Vertebrate Mitochondrial Code.
For additional information on genetic codes, please check: http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi.

Once you have defined the codon range and the genetic code, press the ‘Save’ button and proceed to
defining your Analysis Settings (section 5.4 below).

Revert to nucleotides. To revert defined codons back into nucleotide characters, please press the
‘Revert to nucleotides’ button (Fig. 8). If some of your charsets became unavailable during codon
definitions, they will re-appear in the list of charsets.

5.3.4 Exiting the Settings Window
Once outgroup sequences, charsets, partitions, and excluded sequences and charsets have been de-
fined (and, potentially, the range of codons), and the ‘OK’ button has been hit, the main (entry)
window is updated (Fig. 10): the upper-right window lists the new settings and the lower-right win-
dow indicates the excluded characters and excluded taxa in red, and the various partitions using a
color-coded font background. Switching to another dataset in the left window and modifying the
settings for that dataset does not affect the settings associates to the other datasets.

Note: A dataset can be saved as a Nexus file with both excluded taxa and excluded charset deleted from the
DATA matrix. To do this, use the menu 'File > Save modified dataset to Nexus'.

Fig. 10: The MetaPIGA entry window updated after defining the settings.

MetaPIGA 3.0 manual p17

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

5.4. [A] Analysis Settings

The analysis settings are accessed by clicking on the button or by selecting in the menu:
‘Search’ ➙ ‘Analysis settings’. The Settings window includes 5 tabs to switch among the corre-
sponding parameter controls relevant to: ‘Heuristic’, ‘Evaluation Criterion’, ‘Starting tree(s)’,
‘Operators’, and ‘Miscellaneous’. The user can switch from on tab to another and confirm ALL
changes by clicking on the ‘OK’ button in ANY of the tabs.

Note that the analysis settings window always indicates in the lower left corner (blue frame in Fig. 11) the
amount of memory necessary for running the analysis given the settings so far selected. When the amount of
memory exceeds that allocated to MetaPIGA, the corresponding text turns red. To alleviate the problem, use
‘Tools’ ➙ ‘Memory Settings’ (Fig. 1) to increase the memory allocated to MetaPIGA.

5.4.1. The ‘Heuristic’ tab
We implemented four heuristics in MetaPIGA: a hill climbing algorithm, a Stochastic Simulated
Annealing algorithm (SSA; [26, 42]), a classical Genetic Algorithm (GA; [27-29]), and the meta-
population Genetic Algorithm based on the Consensus Pruning principle (metaGA; [1]), all avail-
able in the Heuristic tab (Fig. 11).

The Hill Climbing (HC) algorithms
The ‘Stochastic HC’ algorithm generates a new solution tree at each step (using available operators)
and accepts it only if its likelihood is better than the current solution. HC algorithms are fast but
tend to generate solutions trapped in local optima and are therefore highly dependent on the starting
tree localization in
tree space as well
as on the (un-
known) tree space
topography.
Hence, the user
can choose to per-
form ‘Random-
restart hill climb-
ing’ i.e., an algo-
rithm that itera-
tively performs N
hill climbings,
each time with a
different initial
tree. Among the N
solution trees,
only the best is
kept. The user can fix the number of restarts (20 by default).

Figure 11 also illustrates the ‘mouse-over’ help system of MetaPIGA: an explanatory note appears when mov-
ing the mouse cursor over the corresponding field, parameter, or radio-button, etc. In figure 11, the mouse cur-
sor is over the ‘Random-restart Hill Climbing’ radio button.

The Stochastic Simulated Annealing algorithm (SSA)
The SSA algorithm uses statistical mechanics principles to solve combinatorial optimization prob-
lems [42]; i.e., it mimics the process of minimal energy annealing in solids. The first attempt to use
this approach for the evolutionary tree problem was introduced in 1985 by Lundy [43], and its use
for ML phylogeny inference was further developed in 2001 by Salter and Pearl [26]. SSA starts
with an initial state (the starting tree) and randomly perturbs that solution (using available tree op-

Fig. 11: The ‘Heuristic’ window with the ‘Hill Climbing’ heuristic selected and the
corresponding mouse-over help text. The blue frame highlights the amount of memory
required for running the analysis given the settings so far selected.

MetaPIGA 3.0 manual p18

erators). If the new state is better (lower energy, better likelihood), it is kept as the new current
state; if the new state is worse (higher energy, worse likelihood), it is accepted as the current state
with the probability eΔE /T , where ∆E is the negative difference in energy (here, the difference of
likelihood) between the two states, and T is the so-called ‘temperature’ of the system. If T is low-
ered slowly enough, the algorithm is guaranteed to find the optimal solution, but if the temperature
is lowered too slowly, the time to find the optimal solution can exceed that of an exact search. The
obvious asset of the algorithm is its ability to momentarily accept suboptimal solutions, allowing it
to escape local optima whereas its obvious drawback is the difficulty to define the shape and speed
of the ‘cooling schedule’ (i.e., the rate of the decrease in T). Efficient schedules highly depend on
the dataset. The efficiency of the algorithm is unknown and optimization of its parameters has never
been performed. Before this optimization analysis (in progress) is finalized, the SSA is provided as
is for allowing users to explore its utility. The parameters available in MetaPIGA 3 for the SSA are
described in Appendix 2.

The Genetic Algorithm (GA)
The GA is an evolutionary computation approach that implements a set of operators mimicking
processes of biological evolution such as mutation, recombination, selection, and reproduction (e.g.,
[44]). After an initial step of generating a population of trees, the individuals (specific trees with
their model parameters) within that population are (i) subjected to mutation (a stochastic alteration
of topology, branch lengths or model parameters) and/or recombination, and (ii) allowed to repro-
duce with a probability that is a
function of their relative fitness
value (here, their likelihood).
Because selection preferen-
tially retains changes that im-
prove the likelihood, the mean
score of the population im-
proves across generations.
However, because sub-optimal
solutions can survive in the
population (with probabilities
that depend on the selection
scheme), the GA allows, in
principle, escaping local op-
tima. In MetaPIGA, we implemented 5 alternative selection schemes (Fig. 12, see [1]):	

✓ ‘Rank’: individuals are assigned a probability of leaving an offspring (i.e., a copy of themselves) as a function of

their position in a list in which they are ranked by their score. The probability for the ith individual of leaving an
offspring to the next generation is equal to:

 2
n(n +1)

(n − i +1)

✓ ‘Tournament’: two individuals are drawn randomly from the population of I individuals and one offspring is
produced from the individual with the higher score. Both trees are then placed back into the mating population
and the whole process is repeated until I offspring have been generated. This is the default selection scheme
when using the GA.

✓ ‘Replacement’: two individuals are drawn randomly from the population of I individuals and two copies of the
better individual are returned to the mating pool (parents are discarded). The process is repeated sI times, where s
is the selection strength. The offspring population is generated as a copy of the post-selection parent population.

✓ ‘Improve’: only those individuals that have improved (in comparison to their likelihood at the previous genera-
tion) are allowed to produce an offspring. Each individual that fails this test is discarded and replaced by a copy
of the current best individual.

✓ ‘Keep the Best’: only the best individual (i.e., with highest likelihood) is kept and all other individuals are re-
placed by a copy of the best individual.

Fig. 12: The ‘Heuristic’ window with ‘Genetic Algorithm’ selected.

MetaPIGA 3.0 manual p19

All selection regimes (except ‘Improve’ and ‘Keep the best’) tolerate the maintenance of poor trees
in the evolving populations, an effect which allows escaping from local optima but increases search
time (see below how the metaGA resolves that problem).
	

 We also implement one recombination scheme where each sub-optimal individual has a
probability (determined by the user) to recombine with a better individual. Recombination is per-
formed by exchanging subtrees defined by one (if any) of the identical taxa partitions in the two pa-
rental trees (i.e., one internal branch that defines subtrees including the same taxa but with poten-
tially different sub-topologies). A recombination can be viewed as a large number of simultaneous
topological mutations.
	

 Beside the selection scheme and the possibility to perform intra-population recombinations,
the major parameter in the GA is the population size (set by the user).

The metapopulation Genetic Algorithm (metaGA)
This approach relies on the coexistence of P interacting popu-
lations [1] of I individuals each (P and I defined by the user):
the populations are not fully independent as they cooperate in
the search for optimal solutions. Within each population, a
classical GA is performed: trees are subjected to mutation
events, evaluation, and selection (5 alternative selection
schemes are available as in the GA above). However, all topo-
logical operators are guided through inter-population compari-
sons defined and controlled by ‘Consensus Pruning’ (CP; [1]):
topological consensus among trees across populations defines
the probability with which different portions of each tree are
subjected to topological mutations (Fig. 13). These compari-
sons allow the dynamic differentiation between internal
branches that are likely correct (hence, that should be changed
with low probability) and those that are likely incorrect (hence,
that should be modified with high probability).
Although CP allows for many
alternative inter-population
communication procedures, we
implemented (Fig. 14) the two
that we identified as the most
useful:
✓ ‘Strict CP’: internal

branches shared by all trees
across all populations can-
not be affected by topologi-
cal mutations, all other in-
ternal branches are uncon-
strained.

✓ ‘Stochastic CP’ (default):
topological mutations affect-
ing a given branch are re-
jected with a probability
proportional to the percent-
age of trees across all popu-
lations that agree on that branch.

The default selection method for the MetaGA is ‘Improve’ (see above). This scheme greatly re-

a

b

c d

e f

g

h

i

j
k

l

mn
o

Prohibited
SPR

Allowed
SPR

Pro
hib

ite
d

TXS

Allowed TXS

Fig. 13: The principle of CP. Before
a tree is mutated, its topology is
compared with those of the best trees
from other populations; the
consensus branches (bold red) define
the partitions that can (green arrows)
and cannot (red arrows) be affected
by topological mutations; i.e., any
operation moving a taxon across a
consensus branch is prohibited.

Fig. 14: The ‘Heuristic’ window with the ‘metaPopulation Genetic
Algorithm’ selected.

MetaPIGA 3.0 manual p20

duces the intra-population variability after each selection step but local optima are avoided thanks
to ‘Consensus Pruning’. In other words, the metaGA resolves the major problem inherent to
classical Genetic Algorithms by maintaining high (inter-population) variation even under
strong (intra-population) selection.
	

 As constraining entirely an internal branch from being affected by topological mutations nec-
essarily increases the likelihood to be trapped in a local optimum, a tolerance parameter t (defined
to 5% by the user in Fig. 14) is implemented, allowing any internal branch to be affected with a
probability t even if the corresponding branch is shared by all trees. The user of MetaPIGA has the
choice between a ‘blind’ and a ‘supervised’ procedure for handling constrained partitions (Fig. 14).
In the former, a topological mutation that affects a constrained branch is simply aborted and the tree
is left unchanged, whereas in the latter, topological operators exclusively target branches in a pool
of acceptable (unconstrained) candidates. The ‘supervised’ procedure is used as default because
preliminary analyses suggest that it allows trees to converge faster to higher likelihoods.
	

 The MetaGA allows for two, non-mutually exclusive, recombination flavors: ‘intra-
population recombination’ (lower-left field in Fig. 15) where each sub-optimal individual at each
generation has a probability (instead of being mutated) to recombine with a better individual from
that population (as in the GA above), and ‘inter-population hybridization’ (lower-right field in Fig.
14) where, at each generation, there is a probability (defined by the user) that all sub-optimal indi-
viduals from one random population, instead of being mutated, are recombined with one individual
from another population; sub-optimal individuals from other populations experience the normal mu-
tation procedure.
	

 As CP provides frequencies of internal branches shared among trees across populations, it
also indicates if the populations converge towards a stable set of solutions, i.e., towards a consensus
with stable branch frequencies. Hence, CP provides a stopping rule not available to other heuristics:
the user can choose to stop the search when a series of successive mean relative error (MRE) values
remains below a threshold defined by the user. To increase independence among samples, MRE are
computed every n>1 (i.e., non-successive) generations. The user defines n, as well as for how many
samples the MRE must remain below the specified threshold before the search stops. See Section
5.4.5 (The ‘Miscellaneous’ tab) for details.

5.4.2. The ‘Evaluation criterion’ tab
Setting ML Models
This window allows defining substitution models and their parameters (Fig. 15). Trees are estimated
in MetaPIGA with the Maximum Likelihood criterion (ML) using one of 5 nucleotide substitution
models for DNA sequences, one of 11 amino-acid substitution models, or one of two codon mod-
els. The implemented nucleotide substitution models are ([3] and refs therein): ‘Jukes Cantor’
(JC), Kimura’s 2 parameters’ (K2P), ‘Hasegawa-Kishino-Yano 1985’ (HKY85), ‘Tamura-Nei
1993’ (TN93), and ‘General Time Reversible (GTR)’. The available amino-acid substitution mod-
els are: the ‘Poisson’ and ‘GTR20’ models (extensions of, respectively, the JC and GTR models to
the 20 by 20 substitution matrix of protein sequences), and 9 empirical models for mitochondrial,
chloroplastic, and nuclear Protein sequences: ‘MtMam’, ‘MtRev’, ‘RtRev’, ‘CpRev’, ‘BLOS-
SUM62’, ‘VT’, ‘Dayhoff’, ‘JTT’, and ‘WAG’. The implemented codon substitution models are GY
and ECM (Empirical Codon Model) [45, 46]. For the empirical protein and codon models, state
frequencies can be set to the empirical values used by the authors who designed the corresponding
model. Alternatively, state frequencies can be set to those observed in the dataset under analysis.
Analyses can be performed with Rate Heterogeneity among sites using either a discrete ‘Gamma
distribution of rates’ (γ-distr) [35, 36] or a ‘Proportion of Invariant Sites’ (Pinv) [37], or both (γ-
distr + Pinv). All parameters of the model (transition/transversion ratio or components of the rate
matrix, the shape parameter of the γ-distr, and Pinv) can be set by the user or estimated from a NJ
tree (using the ‘Estimate starting parameters’ button, blue frame, Fig. 15).

MetaPIGA 3.0 manual p21

Fig. 15: The ML model window for DNA (top panel) and Protein (middle panel) datasets. The purple arrow
indicates the drop-down menu for selecting the character set for which the settings are being defined: all charsets
must be analyzed with the same single model (K2P and WAG models are selected in the examples shown), but the
parameter values of the chosen model (e.g., the transition:transversion ratio for K2P or the estimated aa frequencies
for WAG) can be different for each partition. Lower panel: When using the GTR20 model (i.e., the general-time-
reversible model extended to the 20x20 aa substitution rate matrix), the 190 rate parameters can be optimized during
the search (i.e., if the RPM operator is selected), but the starting values can be set to the values of any of the
empirical models (WAG, JTT, ...) by selecting the model in the drop-down menu (red arrow 1), and hitting the ‘Fill
R matrix’ button (red arrow 2).

MetaPIGA 3.0 manual p22

Note: for nucleotide substitution models, the ‘transition-transversion ratio’ (Ti/Tv) is the parameter called
kappa, i.e., the ratio between the rate of Ti and the rate of Tv. Because there are twice as many possible trans-
versions (A↔T; A↔C; G↔T; G↔C) as possible transitions (A↔G; T↔C), the kappa parameter does not
equate to the ratio ‘frequency of Ti / frequency of Tv’. For example, under the JC model, kappa=1 but ‘FreqTi/
freqTv’= 0.5. For the codon substitution models kappa = ‘freqTi/freqTv’.
Note: Model parameter values can be estimated from the NJ tree using the ‘Estimate starting parameters’ but-
ton (blue frame, Fig. 15). However, if you stop the estimation before it completes, parameter values will not be
re-set to the original values but to the values obtained by the optimization algorithm right before it was
stopped.

Automated choice of best Model (LRT, AIC, BIC)
One difficulty in ML phylogeny inference is to choose the “right” substitution model: too-simple a
model will fit the data poorly and can lead to erroneous inference, whereas too-complex a model
will run more slowly and over-fit the data (i.e., too many parameters in relation to the data will gen-
erate an increased variance for all parameters ... the model will describe noise in addition to the
data). The softwares MODELTEST and PROTTEST (http://darwin.uvigo.es) implement statistical
methods for selecting the model that best fits the data ([41]; and refs therein). MetaPIGA makes the
procedure easier as it implements the Likelihood Ratio Test, the Akaike Information Criterion, and
the Bayesian Information Criterion and performs parameter optimization automatically: simply
choose your preferred model testing method (red frames in Fig. 15). For example, running the
Akaike Information Criterion test on the ‘ranoidea_1b.nex’ file will generate the results shown in
Figure 16: MetaPIGA proposes to use the GTR model with gamma-rate heterogeneity but no pro-
portion of invariant sites. Accepting this proposition will set this model in MetaPIGA as well as the
starting parameter values (here, rate parameters and gamma distribution shape parameter) to those
evaluated during the test. As the various models are tested in parallel on all the CPU cores of your
machine, MetaPIGA will warn you if not enough memory is available, a problem that can easily be
alleviated by reducing the number of cores allocated to the task (blue oval in Fig. 16).

Fig. 16: Running the Model Testing (here, with the AIC criterion).

MetaPIGA 3.0 manual p23

http://darwin.uvigo.es/software/modeltest.html
http://darwin.uvigo.es/software/modeltest.html

Note: that partitions (defined in the ‘Dataset Settings’ window, Figs. 4-10) are taken into account when per-
forming a ‘Model Test’. Given that model testing can take several hours to run on large datasets (especially
with protein data, given the number of models to compare), MetaPIGA allows you to restrict model testing
(Fig. 16) to the comparison of a subset of models.

Note: if you want to abort model testing (e.g., because you forgot to include/exclude taxa and/or charsets, or
want to change your partitioning of the data), hit the ‘CANCEL TESTING’ button: testing will be aborted and
all optimizations performed so far will be ignored. On the other hand, hitting a ‘CANCEL CURRENT’ button
will stop optimization on the model being currently evaluated; obviously, the results of the statistical tests will
then be contestable.

Intra-step optimization
All parameters of the model (transition/transversion ratio or components of the rate matrix, the
shape parameter of the γ-distr, and Pinv), branch lengths, and among-partition relative rates can
experience ‘Intra-step optimization’ (blue frame in Fig. 15) either periodically during the search
and/or at the end of the search. The principle of stochastic methods (i.e., inter-step optimization
methods), such as MC3 approximations of the Bayesian approach, stochastic simulated annealing,
and genetic algorithms, is to AVOID intra-step optimization. Hence, the default in MetaPIGA is that
all target parameters (chosen by the user) are NOT optimized intra-step (only the consensus tree
obtained after replicated searches -- see section 5.4.5 -- will have it’s model parameters optimized).
Hence, the stochastic heuristic itself will optimize topology, branch lengths and other model pa-
rameters during each search. When using the 'discrete' or 'stochastic' options (blue frame, Fig. 15),
current best tree(s) are also optimized during the search, respectively every s numbers of steps or
with a probability p at each step. These two options can obviously greatly increase running time.

Note: For intra-step optimization, MetaPIGA implements a single algorithm: a genetic algorithm without re-
combination; each tree to optimize is copied 7 times and the population of 8 individuals experiences mutations
(on selected targets); selection is performed with tournament; the GA is stops when the likelihood remains un-
changed for 200 steps (generations). Future versions of MetaPIGA will also include alternatives to the GA
(such as, possibly, the Powell’s algorithm).

Note: the ‘consensus tree only’ option (blue frame, Fig. 15) is equivalent to the “never” option when perform-
ing a single search (one replicate). The two options differ only when preforming multiple replicates (see sec-
tion 5.4.5 below). When target parameters are optimized every s steps or stochastically, optimization is also
performed at the end of (each) search.

5.4.3. The ‘Starting tree(s)’ tab
As shown in Figure 17, the user can choose to produce the starting tree(s) either as NJ Tree(s) [47]
or as Random Tree(s) (i.e., with random topology and random branch lengths) or as ‘Loose Neigh-
bor Joining’ (LNJ) tree(s), i.e., a pseudo-random topology (modified from [1]). For generating a
LNJ tree, the user specifies a proportion value (p=[0-1]) and, at each step of the NJ algorithm, the
two nodes to cluster, instead of corresponding to the smallest distance value, are randomly chosen

from a list containing the NTax(Ntax −1)p
2

 smaller distances, where NTax is the number of se-

quences in the dataset. Branch lengths are computed as in the NJ method. In other words, the LNJ
tree is a NJ tree with some topology randomization which amount is defined by the user. This
approach is a particularly useful compromise between random starting trees (p=1) that require long
runs of the heuristic for optimization, and a good but fixed topology (the NJ tree, i.e., p=0) that
might be prone to generate solutions around a local optimum. The LNJ starting tree method is par-
ticularly well adapted to the metaGA. Indeed, starting from I*P (where I is the number of individu-
als (trees) per population and P is the number of populations) random trees will significantly in-
crease the search time whereas starting from I*P identical NJ trees will cause the stopping rule to be

MetaPIGA 3.0 manual p24

reached too fast (see below) with local optima solutions. On the other hand, LNJ starting trees
provide enough variation among populations for avoiding local optima but significantly
speed-up the search in comparison with using ‘True random’ starting trees.

Fig. 17: The ‘Starting tree(s)’ window.

Note: The distance matrix used for building NJ or LNJ starting trees can be computed using any of the available substitution
models (see above) and with or without Pinv and/or γ-distr. Unless the user wants to start with trees with the highest likelihood
possible, we recommend using a simple and fast model (e.g., JC and Poisson respectively for nucleotide and protein data) for
generating starting trees as they will anyway be highly modified during the heuristic search. For codon substitution models, three
distance matrices are calculated (for codon positions 1, 2, and 3) using one of the available nucleotide substitution models. These
three matrices are then weighted based on the evolutionary information they provide and combined into the single distance ma-
trix [48].
Note: When choosing the ‘Neighbor Joining’ starting-tree option during a ‘Random-restart hill climbing’ search (Heuristic tab,
section 5.4.1), the NJ tree will only be used for the first hill climbing, and ‘LNJ trees’ will be generated for all restarts.
Note: Arbitrary starting trees (in Newick format) can also be imported by the user. When clicking on the ‘User tree(s)’ radio
button then on the ‘select’ button (Fig.17), you will prompted to choose starting trees from a list. Various buttons allow you to
add more trees in that list either from the ‘TreeViewer’ or from Nexus files.
Notes: if the Nexus file contains user trees (in a Tree Block) and if you select the ‘User tree(s)’ starting-tree option:
✓ The first tree in the Tree Block will be used if you selected SA or stochastic HC as the heuristic;
✓ The I first trees in the Tree Block will be used when selecting GA as the heuristic option with I individuals (one tree per indi-

vidual);
✓ The P first trees in the Tree block will be used when selecting CP as the heuristic with P populations (one tree per popula-

tion);
✓ If there are too few trees in the list of starting trees, MetaPIGA will cycle among the available trees;
✓ In the case of a ‘Random-restart hill climbing’ search (‘Heuristic’ tab, section 5.4.1), if the number of provided starting trees

is smaller than N+1 (i.e., the number of restarts plus 1), LNJ trees will be generated for the missing starting trees.

5.4.4. The ‘Operators’ tab
All stochastic heuristics use Operators, i.e., the topology and parameters’ modifiers allowing the
heuristic to explore solution space. In MetaPIGA, we implemented 5 operators for perturbing tree
topology and 6 operators for perturbing model parameters (see below). These operators can be used
in any combination, either at equal or user-defined frequencies. The user can choose for these fre-
quencies to change dynamically during the search, i.e., MetaPIGA can periodically evaluate the
relative gains in likelihood produced by each operator and adjust their frequencies proportionally5.

MetaPIGA 3.0 manual p25

5 If only some of the operators are made dynamic, their probabilities are assigned after subtracting from 1 the probabili-
ties of the fixed operators. A minimum operator frequency can be set to prevent operators from being switched off. In-
deed, an operator which is very inefficient early in the search could become efficient later in the search.

In the example given in figure 18,
the evaluation of the operators’ per-
formances is computed every 100
generations, and the minimum fre-
quency of any selected operator is
set to 4%.
	

 ‘Nearest Neighbor Inter-
change’ (NNI), ‘Subtree Pruning
Regrafting’ (SPR), and ‘Tree Bisec-
tion Reconnection’ (TBR) are classi-
cal branch-swapping algorithms
used in many heuristics for phy-
logeny inference [21]. MetaPIGA
also implements the following to-
pology operators:
✓ ‘Taxa Swap’ (TXS): n randomly-

selected terminal branches are
randomly swapped. The value of n can be set to any number between 2 (default) and the total
number of taxa (ALL), or randomly chosen (RAND) at each generation.

✓ ‘Subtree Swap’ (STS): 2 (default) or a random number (RAND) of subtrees are randomly
swapped.

The 6 other operators affect model parameters:
✓ ‘Branch Length Mutation’ (BLM) and ‘internal Branch length mutation’ (BLMint). As our pre-

liminary analyses (data not shown) indicated that branch length optimization yields external
branch lengths that are quite similar to those obtained through topology-constrained NJ (both on
a NJ topology and on a ML topology), we implemented a branch-length operator (BLMint) af-
fecting internal branches only. We also implemented a branch-length operator (BLM) that can
affect all (internal and external) branches.

✓ ‘Rate Parameters Mutation’ (RPM): This operator is not available for the JC model as the rate
parameter is identical for all possible substitutions under this model. The K2P and HKY models
consider two rates (the rate of Ti, and the rate of Tv); hence, only the kappa parameter (ratio of
Ti and Tv rates) can be affected. The TN93 model assigns 3 different rates: for transversions, for
A↔G transitions, and for T↔C transitions. The GTR model allows assigning different rates for
the 6 possible substitutions: A↔T, A↔C, G↔T, G↔C, A↔G, and T↔C. Under the TN93 and
GTR models, the user can choose that each RPM operation affects either ‘1’ (default) randomly
chosen rate parameter or ‘ALL’ rate parameters. The ‘1’ and ‘ALL’ commands are equivalent un-
der the K2P and HKY models because, although there are two rates, there is only one free rate
parameter (the other one is set to 1).

✓ ‘Gamma Distribution Mutation’ (GDM): modifies the γ-distr shape parameter.
✓ ‘Proportion of Invariable sites Mutation’ (PIM): affects Pinv.
✓ Among-Partitions Rate Mutation’ (APRM): affects the relative rates among partitions.

Notes:
• The BLM, BLMint, RPM, and GDM operators affect their corresponding parameter by multiplying the pa-

rameter’s value of the previous generation by a random number drawn from an exponential distribution (with
λ=2), and shifted by 0.5 (such that the minimum value is 0.5 and the mean is 1).

• The PIM (values between 0 and 1) and APRM operators affect their corresponding parameters by multiplying
the parameter’s value of the previous generation by a random number drawn from a normal distribution (with
mean=1 and SD= 0.5). The resulting multiplier is rejected if ≤ 0.4.

• For LNJ starting trees, the initial length of all internal branches is computed with the NJ algorithm whereas,

Fig. 18: The ‘Operators’ tab.

MetaPIGA 3.0 manual p26

for random starting trees, they are drawn from an exponential distribution (with λ=1), and shifted by 0.001 (to
avoid zero length branches).

5.4.5. The ‘Miscellaneous’ tab
This window allows the user to choose stop criteria and define the parameters of replicated searches
(to obtain estimates of branches’ posterior probabilities). In addition, the user can choose which log
files to save on disk. Also, if a supported graphics card is available, the user can choose to use either
the CPU or the GPU for likelihood computation. Increase of computation speed is particularly sig-
nificant for protein and codon models.

Fig. 19: The ‘Miscellaneous’ window for defining stopping condition(s), parameters for performing replicates (and
obtaining estimates of posterior probabilities under the MetaGA), and the label of the directory in which all results
will be saved. Log files to be saved on disk can also be defined. The amount of memory required for running the
analysis (blue frame) has significantly increased because a complex model is used (Fig. 14) and because 4 cores
have been chosen for parallelization (red frame).

Stop Criteria
Exactly as in the MC3 approximations of the Bayesian approach [24, 25] implemented in the soft-
ware MrBayes [31] for which the user must define a number of generations and trees to sample be-
fore stopping the search, all stochastic heuristics implemented in MetaPIGA require a stop condi-
tion. We implemented several stop conditions in MetaPIGA; any number of conditions can be set
and each one can be necessary or sufficient (Fig. 19, ‘nec.’ or ‘suf.’)6. The stop criteria are: number
of steps e.g., number of generations for the GA or the metaGA), elapsed time, and likelihood stabil-
ity. The later, termed ‘Automatic’ in the GUI (Fig. 19), means that the search stops when the log-
likelihood of the best tree has not improved of more than a given percentage (defined by the user,

MetaPIGA 3.0 manual p27

6 The heuristic stops when any of the sufficient conditions is met or when all necessary conditions are met. Conditions
are sufficient by default.

0.05% by default) at any step during n steps (n also defined by the user).
Note: that, when using the ‘Random-restart hill climbing’ heuristic (Fig. 11), the stop conditions are defined
for one hill climbing. For example, when using random-restart hill climbing with 10 restarts and ‘2000 steps’
as the stop condition, 11 hill climbing of 2000 steps will be performed but only the best scored tree, among the
11 results, will be kept.

When using the metaGA heuristic, one can use the Consensus’ stopping condition based on con-
vergence of the populations of solutions. Indeed, comparing (across generations) the frequencies of
internal branches shared among the P*I trees provides a means for assessing whether the popula-
tions converge towards a stable set of solutions, i.e., towards a consensus with stable branch fre-
quencies. Hence, a stopping rule, not available to other heuristics, can be used under Consensus
Pruning (=MetaGA): the user can choose to stop the search when a series of mean relative error
(MRE) values remains, across generations, below a threshold (in %) defined by the user. In our ex-
perience, using the Consensus stopping-rule with a threshold of 5% works very well when perform-
ing replicates (for estimating posterior probabilities of clades, see below). On the other hand, if you
perform a single search in order to find the single very best tree, you might want to experiment with
either lower threshold values (e.g., 1%) or the stopping rule based on stability of the likelihood
value (e.g., 200 steps without improvement of 0.01% of the log-likelihood value).

Note: To increase independence among samples, consensus trees are sampled every n>1 (i.e., non-successive)
generations. For example, given two consensus tree, Ti and Tj, corresponding to the consensus among the P*I
trees at generations 5000 and 5005, respectively, the MRE is computed as follows:

MRE(Ti ,Tj) =

ΦTi

p − ΦTj

p

max(ΦTi

p ,ΦTj

p)p=1

nPartition

∑
nPartition

, where nPartition is the sum of taxa bi-partitions observed in Ti and Tj

(but identical partitions are counted once), and ΦTi

p and ΦTj

p are the consensus values of bi-partition p in trees Ti

and Tj, respectively. Note that
ΦTi

p − ΦTj

p

max(ΦTi

p ,ΦTj

p)
= 1 if either both ΦTi

p and ΦTj

p are nil, or if the corresponding

internal branch does not exist in either Ti or Tj. Internal branches that are absent from both Ti and Tj are not
considered. If the MRE(gen5000,gen5005) is above the user-defined threshold (e.g., 3%), it is discarded and a new
MRE is computed for the comparison of generations 5005 and 5010. On the other hand, if MRE(gen5000,gen5005) is
below the threshold, a counter is incremented and a new MRE is computed for the comparison of generations
5000 with the next sample (here, corresponding to generation 5010). The user defines for how many samples
the MRE must remain below the specified threshold before the search stops.

	

Replicates
This functionality is very important because it allows estimating the support of trees and
clades. For all stochastic heuristics implemented in MetaPIGA, the user can chose to repeat the
search many times, generating a majority-rule consensus tree among the replicates. This is particu-
larly useful under the metaGA because previous analyses [1] indicate that a set of multiple
metaGA searches produces trees and clades with frequencies that approximate their posterior
probabilities. Hence, metaGA branch support values would be comparable to posterior probabili-
ties provided by MC3 approximations of Bayesian approaches. The user can either fix the number of
replicates, or specify a range of minimum and maximum number of replicates then choose to let
MetaPIGA stop automatically, exploiting the MRE metric in a similar way as the consensus across
populations in a single metaGA search (see above).

Note: Here, however, the MRE is computed using consensuses across replicates, i.e., Ti is the consensus
among the final trees obtained between replicates 1 and i. No additional replicate is produced when the MRE
among N replicates remains below a given threshold. Consecutive replicates can be used because they are in-
dependent. As an example, if N is set to 10, and the first MRE below the user-defined threshold (e.g., 5%) in-

MetaPIGA 3.0 manual p28

volves replicates 1-241 and 1-242, the MRE is computed 9 additional times, i.e., between the reference con-
sensus T1-241 and Tj, for j corresponding to replicates 1-243, then 1-244, then 1-245, etc. The search stops if the
inter-replicates MRE remains below 5% for 10 consecutive replicates. On the other hand, the counter is reset to
zero as soon as the MRE exceeds 5%, and the new reference tree for computing the MRE is then set to T1-current

replicate. The inter-generations (=intra-replicate) MRE stopping rule can be used in combination with the inter-
replicate MRE stopping rule, letting MetaPIGA decide both when to stop each replicate and when to stop exe-
cuting additional replicates (i.e., when to stop the entire analysis).

Note: in most cases, performing multiple replicates is aimed at generating a consensus tree and estimating
support of internal branches, hence, it is usually not important to perform a final intra-step optimization of all
model parameters at the end of each replicate. This is why the default for ‘Intra-step optimization’ (blue
frames, Fig. 15) is ‘consensus tree only’. It means that a final round of optimization for branch lengths and
model parameters is NOT performed after each replicate (this will significantly save run time and will not
change anything to the internal branches’ frequencies) but it is performed on the final consensus tree (i.e.,
model parameters and branch lengths are optimized on the consensus-tree topology). When the user chooses to
optimize best trees ‘at the end of (each) search’ the consensus tree is optimized as well. With the 'discrete' and
'stochastic' options, current best tree(s) are also optimized multiple times during each replicate as well as at the
end of each search.

The grid
To start an analysis on an XtremWeb-CH Grid, check the ‘Activate GRID’ check-box and write
your grid credentials in the appropriate boxes. If your account is active and the MetaPIGA binaries
are uploaded to the MetaPIGA module, your analysis will start on the Grid after you press the ‘Run’
button. For user documentation, please refer to the following site:
www.xtremwebch.net/mediawiki/index.php/How_use. Please, contact us for additional information.

Log files
The user can choose to write log files on disk. This is however mostly for debugging purposes and
performance testing such that only expert users might need this functionality. Selecting the log files
indicated with asterisks can (i) significantly slow down the search and (ii) fill up large amount of
disk space (with the magnitude of slow-down and fill-up approximately indicated by the number of
asterisks). All log files are written in the results folder (see below).
✓ Dataset - Working matrix log file - Prints the compressed dataset into 'Dataset.log'. The last row contains the

weight of each column, i.e., the number of times this data pattern is found in the data matrix.
✓ Distances – Distance matrix log file - Prints the distance matrix into 'Distances.log'.
✓ Starting trees – Starting Trees log file - Prints the starting tree(s) into 'StartingTrees.tre'.
✓ Consensus (**) – Consensus log file - The ‘Consensus.log' file records consensuses at each step of Consensus

Pruning. It requires disk space between 100 bytes and 1Kb per taxa and per consensus recorded. For example,
recording consensuses for a dataset of 200 taxa, using the metaGA heuristic for a fixed number of 5000 genera-
tions will generate a file between 100Mb and 1Gb for each replicate produced.

✓ Heuristic details (*) – Heuristic search log file - The 'Heuristic.log' file records details about each step of the
heuristic. Requires disk space between 500 bytes & 1 Kb per iteration of the heuristic.

✓ Heuristic trees (**) – Heuristic search tree file - The 'Heuristic.tre' file records each tree found at each step of the
heuristic. It requires disk space of +/- 130 bytes per taxa per tree recorded. For example, recording trees for a
dataset of 200 taxa, using the metaGA heuristic with 4 populations of 4 individuals each, for a fixed amount of
5000 generations will generate a file of about 1.5Gb for each replicate produced.

✓ Operator statistics – Operator statistics file – The ‘OperatorsStatistics.log’ file records operator statistics at the
end of a search, as well as each time the operator frequencies have been updated.

✓ Operator details (***) - Operators log file - The 'OperatorsDetails.log' file records details about the operators
used. It requires disk space of 200-300 bytes per taxa per operation. For example, recording operator details for a
dataset of 200 taxa, using the metaGA heuristic with 4 populations of 4 individuals each, for a fixed number of
5000 generations will generate a file between 1.7Gb and 3.4Gb for each replicate produced.

✓ Ancestral sequences - Ancestral sequences log file - At the end of the heuristic, the ancestral sequence probabili-
ties are printed into the 'AncestralSequences.log' file

MetaPIGA 3.0 manual p29

http://www.xtremwebch.net/mediawiki/index.php/How_use
http://www.xtremwebch.net/mediawiki/index.php/How_use

✓ Performances (*) – The ‘Performances.log’ file records the amount of time (in nanoseconds) used by each op-
erator. It requires disk space of +/- 1 Kb per iteration of the heuristic.

Output label and directory
Viewing of the analyses results can be done in the MetaPIGA graphical interface. However, all re-
sults are also written on disk for later retrieval, viewing and manipulation. When a MetaPIGA
search is started, a result directory (named ‘MetaPIGA results’) is generated in your home directory
(Mac OS X & Linux) or in the ‘My documents’ folder (Windows). When you launch an analysis,
the results will be automatically saved in a folder named with its ‘label’ (which is, by default, the
name of the nexus file minus the “nex” extension, see Fig. 19) followed by the date (year-month-
day) followed by the time (hour_min_sec) at which the search was started. This allows for easy dif-
ferentiation of analyses performed at different times on the same dataset. For example, the result
folder “ranoidea_1b - 2010-06-09 - 17_16_16” includes the result files for the analysis of the
“ranoidea_1b.nex” data set started on June 9, 2010 at 5:16:16PM.
At the end of the search, the result folder contains the file Results.nex, i.e., a text file including:
➡ A MetaPIGA block corresponding to the search parameters;
➡ The data set;
➡ A tree block with the result trees, i.e.:

✴ Either (if replicates have not been performed):
• The best tree found (among all P*I trees) named appropriately (e.g., ‘TREE

rana_~_2010~06~09_~_17_16_16_~_Genetic_algorithm_best_solution’)
• The best tree, of each of the P populations, named appropriately (e.g., ‘TREE

rana_~_2010~06~09_~_17_16_16_~_Best_individual_of_population_0’)
✴ Or (if replicates have been performed):

• The consensus tree (among all replicates) named appropriately (e.g., ‘TREE
rana_~_2010~06~09_~_17_16_16_~_Consensus_tree_~_200_replicates’)

• Then, for each replicate:
- The best tree found (among all P*I trees) named appropriately (e.g., TREE

rana_~_2010~06~09_~_17_16_16_~_Genetic_algorithm_best_solution_[Rep_8]
- The best tree, of each of the P populations, named appropriately (e.g., ‘TREE

rana_~_2010~06~09_~_17_16_16_~_Best_individual_of_population_0_[Rep_8]’)

If replicates have been performed, the result folder will also contain a text file ‘ConsensusTree.tre’
with the consensus tree among replicates. That tree is automatically updated in the run directory
after each replicate. Hence, if a crash or power cut occurs, the latest consensus tree (summariz-
ing all replicates that accumulated before the cut) can be loaded and visualized in MetaPIGA
after restarting. As the name of the tree includes the number of replicates, you will know when the
cut occurred.
	

 As the consensus tree file is in Newick format, it can also be loaded in tree viewing softwares
such as FigTree (http://tree.bio.ed.ac.uk/software/figtree/) or TreeView
(http://taxonomy.zoology.gla.ac.uk/rod/treeview.html).
If log files have been requested (see above), they will be printed either in the results folder or in cor-
responding replicates subfolders.

5.4.6. Exiting the Settings Window
Once all settings have been chosen by the user for the ‘Heuristic’, ‘Evaluation Criterion’, ‘Starting
Tree(s)’, ‘Operators’, and ‘Miscellaneous’ tabs and the OK button has been hit, the Settings win-
dow closes and the main (entry) window is updated with the new settings listed in the upper-right
window. The user can go back to the setting window at anytime for changing any parameter.
Switching to another dataset in the left window and modifying the settings for that dataset does not
affect the settings associates to the other datasets.

MetaPIGA 3.0 manual p30

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html

5.5. [R] The Run window

	

The search is launched by clicking on the
‘[R] Run heuristic search’ button (or by selecting in the menu: ‘Search’ ➙ ‘Run’). Once the
starting trees have been generated (this can take time), the user can follow the ongoing search by
looking at the lower left panel of the run window which displays graphical information specific to
the chosen heuristic method. For example, figure 20 shows the running window for a MetaGA
search with replicates, 4 populations, and stopping rules as indicated in figure 19. The lower-left
panel indicates the likelihood progression of each of the populations (the best tree likelihood in each
population is indicated) as well as which replicate is ongoing (rep 71). If you set replicates paralle-
lization to >1 (see red frame in Fig. 19), tabs give access to the graphs corresponding to each CPU
core (core number 2 is selected in Fig. 20; red arrow).
	

 When using the Stochastic Hill Climbing (HC) or the simple Genetic Algorithm (GA), the
lower-left panel displays the likelihood progression of either the current tree (for stochastic HC) or
of the best tree in the single population of trees (for the GA). When using the SSA, it indicates the
progression of both the ‘temperature’ and of the likelihood. During a random-restart Hill Climbing,
the graphical interface indicates the likelihood of the overall best solution (green line), the best so-
lution of the current restart (yellow curve), and the starting tree of each restart (red line). Magenta
and blue vertical lines indicate new restarts and replicates, respectively.

Fig. 20: The run window when replicates have been requested under the MetaGA heuristic. The best tree likelihood
in each population is indicated

MetaPIGA 3.0 manual p31

	

 In parallel with the likelihood progression displayed in the lower-left panel, the right panel
displays information on the current inferred phylogeny. When performing a single search (i.e.,
without replicates) the tree displayed is the current best tree. When performing replicates (as in Fig.
20), the right panel shows the current consensus tree (and corresponding frequencies of internal
branches) among all replicates accumulated thus far. Hence, the right panel of the run window al-
lows the user to observe, on the fly, the progression of the phylogeny inference or (when using the
metaGA) the progression of posterior probabilities of branches. In both cases, the user can switch
between phylogram and cladogram (blue arrow in Fig. 20). The current values of the inter-
generations (=intra-replicate) MRE and inter-replicate MRE (see ‘stopping rules’ above) are also
indicated (red frames in Fig. 20).
	

 Once the search is completed, a window will pop up reminding you that all results (best trees
and consensus tree) have been saved in your result folder, but will also propose you to send ‘All
best trees’ or the ‘Consensus tree only’ to the ‘Tree Viewer’ (see section 5.6 below) for further ma-
nipulations (rerooting, exporting, changing substitution model and further optimizing model pa-
rameters, reconstruction of ancestral states, etc).
	

 When using the XtremWeb-CH Grid, the run window shows the status of the workers:
queued, waiting, processing, completed, killed, or in error (see Fig. 21 for details). Workers with the
status ‘complete’ have already sent their results back to your local machine. To use the XtremWeb
Grid, please, refer to the following web site:
http://www.xtremwebch.net/mediawiki/index.php/How_use

Fig. 21: The ‘Run’ window when using a XWCH grid. Status of worker are color-coded. A white box indicates that
the replicate is waiting to be submitted to the grid whereas a gray box means that the replicate is waiting for an
available worker. A blue box indicates that the worker is selected will start the analysis. A yellow box indicates that
the replicate is running. A green box indicates that the replicate is completed and successfully retrieved from the
grid. Finally, a red box means that MetaPIGA cannot retrieve the result or that the worker is not responding (error
replicates are not used and have no effect on your analysis). Replicates stopped by the user are indicated with a
black box (‘killed’).

MetaPIGA 3.0 manual p32

http://www.xtremwebch.net/mediawiki/index.php/How_use
http://www.xtremwebch.net/mediawiki/index.php/How_use

5.6. [T] The tree viewer

5.6.1. Viewing and evaluating trees
The Tree Viewer is opened by clicking on the
‘[T] Tree viewer’ button (or by selecting in the menu: ‘Tools’ ➙ ‘Tree viewer’). Trees can be
saved in the ‘Tree viewer’ either at the end of a search or by importing trees from files. The user can
even type (or copy-paste) a tree in Newick format in the lower left panel (red frame in Fig. 22), give
it a name and add it to the TreeViewer’s list of trees. The Tree viewer allows to display, rename, or
remove any of these trees at any time. The ‘Clear list’ button delete all trees from the Tree viewer.
Buttons at the bottom of the right panel allow to display the selected tree in various styles (rectan-
gular, triangular, circular, phylogram), and show/hide its nodes’ numbers or its branch lengths.
Other buttons allow rerooting a tree at any node, and save or print one or several selected tree(s).
The upper right panel indicates the parameters of the model (for each partition, if any) and the cor-
responding likelihood (yellow oval; Fig.22) of the selected tree. Obviously, for computing a likeli-
hood, every tree must be associated to a dataset, hence, the ‘Tree Viewer’ only lists the trees that are
relevant to the active dataset. The latter can be selected either in the ‘Current dataset’ scroll down
list (Fig. 23) or in the MetaPIGA main window (Fig. 2 and 10). This allows the user to easily man-
age trees generated with different datasets.

Note: Several trees can be simultaneously selected from the list by using ‘command click’ and/or ‘shift-click’.
This allows removing several trees simultaneously. On the other hand, all other commands (model change,
printing, rooting, ancestral state reconstruction, etc.) will affect only the tree highest in the list of selected trees.

Fig. 22: The MetaPIGA tree viewer with one tree selected in the list. Red arrow: the ‘Model’ button gives access to a
window (Fig. 23) for optimization of parameters and/or branch lengths and re-computation of the corresponding
Likelihood under any substitution model. Green arrow: button giving access to the ancestral state reconstruction
panel (Fig. 24).

MetaPIGA 3.0 manual p33

	

 Clicking on the ‘Model’ button in the ‘Tree-
Viewer’ (red arrow; Fig. 22), opens the ‘Evaluation
settings’ window (Fig. 23) that allows (for the se-
lected tree) to (re-)optimize model parameters and/
or branch lengths and re-compute the correspond-
ing likelihood under any settings of model parame-
ters. Note that, although parameters can be manu-
ally set for each partition separately by using the
vertical tabs (Fig. 23), clicking on the ‘Optimize
model parameters’ or ‘Optimize branch lengths’
button will perform joint optimization for all parti-
tions. Once the model setting have been confirmed
by clicking the ‘OK’ button, the upper-right panel
of the ‘TreeViewer’ (Fig. 22), and the tree itself,
will be updated with the new parameter values.

5.6.2. Ancestral states reconstruction
During phylogeny inference under ML, the probabilities of all possible character states at all nodes
are computed for all characters. This provides means for reconstructing ancestral sequences both in
silico and in the laboratory (e.g., [10-14]). Clicking on the button indicated with a green arrow in
Fig. 22 gives access to the ancestral state reconstruction panel of the ‘TreeViewer’. Simply select an
internal node on the tree for viewing its corresponding ancestral sequence. Various buttons allow for
different display styles and for exporting the ancestral sequence(s) (and the corresponding statistics)
either of the selected node or of all internal nodes of the tree. The ancestral sequence reconstruction
we implemented is Empirical Bayes [49].

Fig. 24: The ancestral state reconstruction panel displays the conditional likelihood proportions of
each state at each site for the node 6, directly selected on the tree in the upper-right panel. The and

 buttons allow exporting to disk a text file with the ancestral states of the selected node or of all
nodes, respectively. Use the and buttons to switch between a view where bars of the
histogram, for each character, are in front of each others (with the column of lowest likelihood
proportion in the front) and a stacked histogram. The sequence indicated at the top corresponds to the
most likely ancestral sequence.

Fig. 23: The evaluation settings window.

MetaPIGA 3.0 manual p34

5.7. Building and running batch
files with the GUI
MetaPIGA supports the use of batch files that can
be either written manually (see next Section) or
generated using tools available in the GUI: datasets
and their settings can be duplicated, settings can be “stamped” from one dataset to another, and
multiple combinations of datasets and settings can be saved in a batch file that can be run either in
the GUI (with various graphical information on search progress) or using command line.

5.7.1. Transferring analysis settings among datasets
Batch files are particularly useful for running different datasets with the same analysis settings.
Imagine for example that you have opened 4 datasets in MetaPIGA (‘012x898 - Primate’, ‘PRO-
TEINS - 36x958’, ‘ranoidea_1b’, and ‘055x1314 - mp1’) and that you have chosen all settings (us-
ing the various tabs in the Analysis
Settings window, see section 5.4)
for the dataset ranoidea_1b. Now,
as shown in figure 25, you can
transfer these settings to any com-
bination of other opened datasets by
(i) choosing the source dataset, then
(ii) clicking on the ‘[O] Associate
settings’ button (or by selecting
in the menu: ‘Batch’ ➙ ‘Associate
selected dataset analysis settings’),
then (iii) selecting the dataset(s)
you want to transfer the settings to, and (iv) click on the ‘Associate’ button.
✓ The batch can then be run in the GUI by clicking on the ‘[⇑R] Run batch’ button (or by se-

lecting in the menu: ‘Batch’ ➙ ‘Run all datasets in a batch’)
✓ Alternatively, the user can save the batch by clicking on the ‘Save all files in a Nexus batch’

button (or by selecting in the menu: ‘Batch’ ➙ ‘Save all datasets in a batch Nexus file’). This
file can be run in command line (e.g., on a distant server) or re-imported in MetaPIGA and run
through the GUI.

5.7.2. Duplicating datasets for batch files
Batch files are equally useful for running sequentially a single data set under multiple different set-
tings: for example analyzing your favorite dataset with different substitution models or with differ-
ent heuristics. First make as many duplicates of your dataset (called ‘012x898 - Primate’ in Fig. 26)
as you wish by clicking on the ‘[U] Duplicate selected dataset’ button (or by selecting in the
menu: ‘Batch’ ➙ ‘Duplicate selected dataset’). Then, select a duplicate and change the settings as
required (in the ‘Analysis settings’ window). In this way, you can for example run a batch file that
will sequentially run the ‘Primate’, ‘Primate_1’, ‘Primate_2’, and ‘Primate_3’ datasets with, re-
spectively the JC, K2P, HKY, and GTR substitution models. Note that, when duplicating a file, the
settings listed in the ‘Dataset settings’ window (outgroup taxa, charsets, partitions, etc.) are dupli-
cated as well.

Fig. 25: Transferring settings from one dataset to other dataset(s).

MetaPIGA 3.0 manual p35

a

b

Fig. 26: (a) Duplicating datasets and (b) the parameter panel indicates the modified settings as chosen in the ‘[A]
Analysis Settings’ window (here, we have changed the substitution model to K2P with rate heterogeneity (and
estimated starting parameters) for the ‘Primate_1’ duplicate whereas the initial settings for the ‘Primate’ dataset is
JC).

Notes: when running a batch file:
✓ The run window is simplified (in comparison to what is described above in Section 5.5). Beside basic statistics on

the current run, the batch run window displays (in two separate panels) the log file information on the current run
and on the overall batch. Two buttons allow for stopping either the current run or the entire batch of runs.

✓ The result trees of all replicates of all runs are automatically added to the ‘TreeViewer’.

5.8. Building batch files manually
Instead of using the GUI, you can manually build Nexus batch files. As an example, the file below
will run the single dataset of 15 taxa and 100 characters first with the JC model then with the GTR
model + gamma-distributed rate heterogeneity.
The full list of MetaPIGA commands for manually building batch files are available in the Appen-
dix 1.

Check the end of section 5.2 for instructions on how running MetaPIGA in command line (this
is particularly useful if you want to send jobs to a distant server).

#NEXUS
[Metapiga - LANE (Laboratory of Artificial and Natural Evolution, University of Geneva)]

BEGIN BATCH;
RUN LABEL=15-100 DATA=data_1 PARAM=param_1;
RUN LABEL=15-100_1 DATA=data_1 PARAM=param_2;
END;

BEGIN METAPIGA;
[BATCHLABEL=param_1]
HEURISTIC CP CONSENSUS=STOCHASTIC OPERATOR=SUPERVISED NPOP=4 NIND=4 TOLERANCE=0.05
HYBRIDIZATION=0.1 SELECTION=IMPROVE RECOMBINATION=0.1 OPERATORAPPLIEDTO=IND NCORE=1;
EVALUATION MODEL=JC DISTRIBUTION=NONE PINV=0.0;
OPTIMIZATION ENDONLY ALGO=GA TARGET{ BL };
STARTINGTREE GENERATION=LNJ(0.1)
MODEL=JC DISTRIBUTION=NONE PINV=0.0;

MetaPIGA 3.0 manual p36

OPERATORS { TXS(2) STS(2) TBR NNI SPR BLM } SELECTION=RANDOM;
SETTINGS LABEL=15-100;
STOPAFTER AUTO=200 CONSENSUS MRE=0.03 GENERATION=5 INTERVAL=10;
REPLICATES AUTOSTOP=MRE(0.05) RMIN=100 RMAX=10000 INTERVAL=10 PARALLEL=1;
OUTGROUP { ANABAENA_SP2 };
END;

BEGIN METAPIGA;
[BATCHLABEL=param_2]
HEURISTIC CP CONSENSUS=STOCHASTIC OPERATOR=SUPERVISED NPOP=4 NIND=4 TOLERANCE=0.05
HYBRIDIZATION=0.1 SELECTION=IMPROVE RECOMBINATION=0.1 OPERATORAPPLIEDTO=IND NCORE=1;
EVALUATION
MODEL=GTR RATEPARAM{ A(0.5) B(0.5) C(0.5) D(0.5) E(0.5)} DISTRIBUTION=GAMMA(4)
DISTSHAPE=1.0 PINV=0.0;
OPTIMIZATION ENDONLY ALGO=GA TARGET{ BL R GAMMA };
STARTINGTREE GENERATION=LNJ(0.1) MODEL=JC DISTRIBUTION=NONE PINV=0.0;
OPERATORS { TXS(2) STS(2) TBR NNI SPR BLM RPM(ALL) GDM } SELECTION=RANDOM;
SETTINGS LABEL=15-100_1;
STOPAFTER AUTO=200 CONSENSUS MRE=0.03 GENERATION=5 INTERVAL=10;
REPLICATES AUTOSTOP=MRE(0.05) RMIN=100 RMAX=10000 INTERVAL=10 PARALLEL=1;
OUTGROUP { ANABAENA_SP2 };
END;

BEGIN DATA;
[BATCHLABEL=data_1]
 DIMENSIONS NTAX=15 NCHAR=100;
 FORMAT DATATYPE=DNA MISSING=? GAP=- SYMBOLS="01" LABELS ITEMS=STATES STATESFORMAT-
=STATESPRESENT NOTOKENS;
 MATRIX
Anabaena_sp2! ! CAAGATTACAGACTAACTTATTACACACCTGATTACACACCTAAAGATACAGATATTCTGGCGGCATTCCGTGTTACACCCCAGCCCGGAGTTCCCTTTG
Chara_conniv! ! AAAGATTACAGATTAACTTACTATACTCCTGAGTATAAAACTAAAGATACTGACATTTTAGCTGCATTTCGTGTAACTCCACAACCTGGCGTTCCACCTG
Chlor_ell! ! AAAGACTACCGTTTAACTTACTATACTCCTGATTACCAACCAAAAGACACTGATATTCTTGCAGCGTTCCGTATGACTCCTCAACCAGGTGTTCCACCAG
Volvox_ro! ! AAAGATTATCGTTTAACATACTACACACCTGACTATGTAGTAAAAGACACTGACATCTTAGCAGCATTTCGTATGACTCCACAACCAGGTGTTCCACCTG
Sirogonium_melanosp! AAAGATTACAGACTTACATATTACACTCCTGAATATGAGACCAAAGAAACTGATATTTTAGCTGCATTCCGCATGACTCCTCAGCCTGGAGTACCACCTG
Zygnema_peliosp!! AAAGATTACAGACTTACCTACTATACTCCTGATTATGAGACCAAAGAAACCGACATTTTAGCTGCATTCCGCATGACTCCTCAAGCTGGAGTTCCACCAG
Conocephalum_92!! AAAGATTATCGATTAACTTATTATACTCCGGATTATGAAACTAAAGATACGGATATTTTAGCAGCATTTAGAATGACTCCTCAGCCTGGGGTACCAGCAG
Dumortiera_100! ! AAAGATTATCGATTAACTTATTACACTCCGGATTATGATACCAAGGATACAGATATTTTGGCAGCCTTTAGAATGACTCCTCAGCCTGGAGTACCAGCAG
Marchantia_5! ! AAAGATTATCGATTAACTTATTACACTCCGGATTATGAGACCAAGGATACGGATATTTTAGCAGCATTTAGAATGACTCCTCAGCCTGGAGTTCCAGCGG
Bazzania_jm! ! AAAGATTATAGATTAACCTATTATACGCCTGAATATGAGACCAAAGAGACAGATATTTTGGCAGCATTTCGTATGACTCCCCAACCGGGAGTACCACCTG
Metzgeria_3! ! AAAGATTACAGATTAAATTATTACACTCCAGATTATGAAACTAAAGATACAGATATTCTAGCAGCATTTCGTATGACCCCTCAGCCTGGAGTACCAGAAG
Porella_4! ! AAAGATTATAGATCAACTTATTATACTCCCGACTATGAAACAAAGGAGACAGATATTTTAGCAGCATTTCGTATGACTCCTCAACCTGGAGTACCAGAAC
Anthoceros_6! ! AAAGATTATAGATTAACCCATTATACCCCTGATTACGAGACCAAGGATACTGATATTTTGGCAGCGTCTTGAATGACTCCTTAACCAGGGGTGCCACCTG
Tetraphis_9! ! ?????????AGATTAACTTATTACACTCCAGATTATGAGACCAAAGAGACCGATATTTTAGCAGCATTTCGAATGACTCCTCAACCCGGAGTACCACCTG
Sphagnum_jm! ! AAAGATTACAGGTTGACTTATTACACCCCGGAGTATGCTGTCAAAGATACCGACATTTTGGCAGCATTTCGAATGACTCCTCAACCTGGAGTACCACCCG

;
END;

MetaPIGA 3.0 manual p37

5.9. The ‘Tools’ Menu
In addition to functionalities discussed above (the ‘TreeViewer’, section 5.6.1; the ‘Ancestral states
reconstruction’ panel, section 5.6.2; and the ‘Memory settings’ window, Fig. 1a), the ‘Tools’ menu
(Fig. 27a) also gives access to a ‘Tree Generator’, a ‘Consensus Tree’ builder, and a tool for com-
puting pairwise distances. The ‘Tree Generator’ (Fig. 27b) allows for the generation of the NJ tree
or any number of Loose Neighbor Joining (LNJ; section 5.4.3) or random trees. The trees generated
are automatically transferred to the ‘TreeViewer’ under appropriate names (e.g., NJ, LNJ_1, LNJ_2,
RANDOM_1, RANDOM_2).

a. b.

Fig. 27: (a) The Tools menu; (b), the Tree Generator.

In the ‘Consensus tree builder’ (Fig. 28a), trees in the left panel (corresponding to all trees from the
‘TreeViewer’) can be moved to the right panel for building a majority-rule consensus tree (with fre-
quencies of clades) which is then automatically added to the TreeViewer under a chosen name
(“my_consensus_tree” in Fig. 28a). The pairwise distances tool (Fig. 28b) allows for computing
pairwise distances (among sequences of the active dataset) in the form of absolute numbers of dif-
ferences or various distances: uncorrected (none) or corrected following a nucleotide or amino-acid
or Codon substitution model with or without rate heterogeneity. Distances can be exported to a text
file for spreadsheet applications such as Excel.

a. b.

Fig. 28: (a) the Consensus tree builder; (b) the tool for computing pairwise distances.

MetaPIGA 3.0 manual p38

5.10. Troubleshooting
	

 Please, don’t hesitate to contact us (Dorde.Grbic@unige.ch or michel.milinkovitch@unige.ch)
if you encounter problems or bugs. We are also open to suggestions for improving the software.

A few problems that can arise when using MetaPIGA are listed below.

Launching
When launching, MetaPIGA checks for the availability of updates (unless you have used the argu-
ment [noupdate] in command line). If you are connected to the internet, and there is no update to
download, MetaPIGA will simply proceed with launching. If there is an update available,
MetaPIGA will request your authorization to perform that update. If you are not correctly connected
to the internet when launching the software, MetaPIGA will simply proceed with launching.

Java errors at launch
✓ The Java 1.6 Virtual Machine (VM) must be installed on your computer for running MetaPIGA.

If you only have earlier Java version(s) installed, your computer will complain, e.g., with an er-
ror like that shown in Fig. 29. The Java 1.6 VM can be installed for Windows and Linux at
http://java.com/en/download/manual.jsp. For Mac OSX, simply run the ‘Software Update’ fea-
ture available on the ‘Apple menu’. To check, on your Mac, if Java 6 is installed and active, sim-
ply launch the ‘Terminal.app’ available in the “Utilities” sub-folder of the “Applications”
folder. Then check your Java version by typing ‘java -version’, and pressing ENTER. If you are
using the Snow Leopard Mac OS (OS X 10.6), you can check the version(s) of Java installed on
your machine by launching the ‘Java Preferences.app’ available in the “Utilities” sub-folder of
the “Applications” folder. Make sure that Java 6 (or later) is in the list AND active (i.e., marked
as in Fig. 30). You DON’T need to remove earlier Java versions (that might be required for older
softwares). Note that if your Mac OS is older than 10.5, it will not support Java 1.6 ... hence, you
will not be able to run MetaPIGA.

Fig. 29: Error message at launch due to the absence
of a Java 1.6 (or later) VM.

Fig. 30: The Java Preferences utility on Mac OS X.

✓ If MetaPIGA crashes at launch, it can also be due to a lack of memory. Try closing other applica-
tions, or change the maximum amount of memory allowed to MetaPIGA: in the file
‘mp2_console.vmoptions’ (that you can find at the root of the MetaPIGA folder, i.e., where the
program is installed) , set the Xmx value (and not the Xms value) to a lower value (expressed in
megabytes; this value must be a multiple of 256). Note however that, to avoid problems, we
made the installer allocate to MetaPIGA half of the memory available on your running machine.
This should insure MetaPIGA to launch properly, even if other programs are running. Once

MetaPIGA 3.0 manual p39

mailto:Dorde.Grbic@unige.ch
mailto:Dorde.Grbic@unige.ch
mailto:michel.milinkovitch@unige.ch
mailto:michel.milinkovitch@unige.ch
http://java.com/en/download/manual.jsp
http://java.com/en/download/manual.jsp

MetaPIGA has launched, the ‘memory settings’ (in the ‘Tools’ menu of MetaPIGA) allows
changing the amount of memory allocated to MetaPIGA. The maximum value available in
‘memory settings’ is 1536 Mb on a 32-bit system (i.e., the maximum allowed by java on such a
system) ... even if the computer is equipped with more than 2Go of RAM. On the other hand, the
maximum value available on a 64-bit system (i.e., most of modern machines) can be much
higher than 1536 Mb but is constrained to the amount of memory available on that machine mi-
nus 512Mb.

Recovering results if a crash occurs
A ‘Results.nex’ file is written to the Results directory (see end of section 5.4.5) when the search is
completed. On the other hand, the ‘ConsensusTree.tre’ file is automatically updated in the run di-
rectory during the search. Hence, if a crash occurs, for example after a significant running time in-
volving a number of replicates, the ‘ConsensusTree.tre’ file (summarizing all replicates that accu-
mulated before the crash) can be loaded and visualized in MetaPIGA after restarting. As the name
of the tree includes the number of replicates, you will know when the crash occurred. As the con-
sensus tree file is in Newick format, it can also be loaded in tree viewing softwares such as:
-FigTree (http://tree.bio.ed.ac.uk/software/figtree/)
-TreeView (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html).

Others

✓ When negative eigenvalues are encountered under GTR, an error message is generated and the
search crashes.

✓ Sequences too dissimilar (>0.75 for DNA sequences, >0.95 for Protein sequences, and > 0.5 for
standard binary data) can cause an error when computing distance matrices. The data quality
control button (i.e., ‘scissor’ button, section 5.2.2) and the ‘check for saturation’ function in the
‘Dataset’ menu allow avoiding that problem.

6.	
 	
 	
 Acknowledgements
We are grateful to Alan Lemmon and Raphaël Helaers for continuing discussions on the metaGA.
Funds were provided by the University of Geneva (Switzerland), the Swiss National Science Foun-
dation, the Société Académique de Genève, the Georges and Antoine Claraz Foundation, the Ernst
& Lucie Schmidheiny Foundation, and the ‘AAA/SWITCH – e-infrastructure for e-science pro-
gram’. We thank Nabil Abdennadher and Mohamed Ben Belgacem (HES-Geneva) for assistance in
the deployment of the Grid version of MetaPIGA. We thank Kim Roelants for designing the
MetaPIGA logo (the flying pig because ... “Pigs don’t fly, but MetaPIGA does” ;-)
Third party libraries: MetaPIGA makes use of the following third party libraries (source code
available through the corresponding links):
• The CERN Colt Scientific library 1.2.0 for pseudorandom number generation and statistics:

http://acs.lbl.gov/software/colt/
• JAMA : A Java Matrix Package for matrix manipulations and eigen values decomposition:

http://math.nist.gov/javanumerics/jama/
• The BioJava library to parse NEXUS files: http://www.biojava.org/

BioJava: an Open-Source Framework for Bioinformatics
R.C.G. Holland; T. Down; M. Pocock; A. Prlić; D. Huen; K. James; S. Foisy; A. Dräger; A.
Yates; M. Heuer; M.J. Schreiber
Bioinformatics (2008) 24 (18): 2096-2097; doi: 10.1093/bioinformatics/btn397

• The Google Collection classes library for its BiMap:
http://code.google.com/p/google-collections/

MetaPIGA 3.0 manual p40

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://acs.lbl.gov/software/colt/
http://acs.lbl.gov/software/colt/
http://math.nist.gov/javanumerics/jama/
http://math.nist.gov/javanumerics/jama/
http://www.biojava.org/
http://www.biojava.org/
http://www.bioinformatics.oxfordjournals.org/content/24/18/2096
http://www.bioinformatics.oxfordjournals.org/content/24/18/2096
http://dx.doi.org/10.1093/bioinformatics/btn397
http://dx.doi.org/10.1093/bioinformatics/btn397
http://code.google.com/p/google-collections/
http://code.google.com/p/google-collections/

7.	
 	
 	
 Appendix	
 1:	
 The	
 MetaPIGA	
 commands

MetaPIGA	
 2	
 requires 	
 only	
 one	
 thing	
 to	
 run:	
 a 	
 nexus 	
 input	
 file.	
 This 	
 file	
 must	
 contain	
 your	
 sequence	

data	
 following	
 the	
 standard	
 Nexus	
 data 	
 structure,	
 i.e.,	
 using	
 data	
 blocks 	
 (or	
 taxa	
 +	
 characters	

blocks).	
 This	
 file	
 can	
 be	
 loaded	
 and	
 run	
 either	
 using	
 the 	
 menu-­‐driven	
 interface 	
 (GUI)	
 of	
 MetaPIGA	

2	
 or	
 in	
 command	
 line.
All 	
 menus 	
 are 	
 described	
 in	
 detail 	
 above.	
 However,	
 the	
 user	
 can	
 also	
 choose	
 to	
 include	
 all 	
 custom-­‐
ized	
 seMngs 	
 of	
 MetaPIGA-­‐2	
 in	
 the	
 Nexus 	
 input	
 file	
 and	
 send	
 it	
 to	
 the	
 program	
 for	
 running	
 without	

the	
 use	
 of	
 the	
 interface.	
 This 	
 is 	
 parNcularly	
 useful 	
 for	
 performing	
 unsupervised	
 successive	
 mulNple	

long	
 runs	
 (batch	
 files).	
 In	
 that	
 case,	
 the	
 customized	
 seMngs	
 of	
 MetaPIGA	
 must	
 be	
 included	
 in	
 the	

Nexus	
 input	
 file 	
 in	
 the 	
 form	
 of	
 a 	
 ‘metapiga 	
 block’.	
 The 	
 structure	
 of	
 this 	
 block	
 is 	
 described	
 hereaf-­‐
ter.	
 Note	
 that,	
 if	
 you	
 don’t	
 like	
 typing	
 the	
 parameter	
 seMngs	
 yourself,	
 you	
 can	
 use	
 the	
 MetaPIGA-­‐2	

user	
 interface	
 to	
 generate,	
 save,	
 and	
 run	
 batch	
 files.	

ConvenNons:
When	
 a 	
 parameter	
 is 	
 associated	
 with	
 informaNon	
 between	
 round	
 parentheses	
 (
),	
 there 	
 must	
 be	

no	
 blank	
 before	
 or	
 within	
 the	
 parentheses.	
 	
 For	
 example:	

DISTRIBUTION = GAMMA(4)
cannot	
 be	
 wriTen

DISTRIBUTION = GAMMA (4)
nor

DISTRIBUTION = GAMMA(4)
nor

DISTRIBUTION = GAMMA (4)

All 	
 parameters 	
 between	
 squared	
 brackets 	
 [
]	
 are	
 opNonal 	
 and	
 can	
 be 	
 omiTed,	
 and	
 MetaPIGA	
 will	

then	
 use 	
 default	
 values	
 (underlined	
 in	
 the	
 block	
 descripNon).	
 DescripNon	
 of	
 the 	
 commands 	
 is	

given	
 in	
 the	
 above	
 user	
 manual	
 (SecNon	
 5.3:	
 ‘Dataset	
 seMngs’).

Batch files
You	
 can	
 easily	
 create 	
 batch	
 files,	
 to	
 run	
 mulNple	
 analyses 	
 automaNcally.	
 Batch	
 files	
 are	
 nexus 	
 files	

in	
 which	
 you	
 can	
 add	
 as 	
 many	
 data	
 block,	
 metapiga	
 blocks,	
 and	
 tree	
 blocks	
 as 	
 you	
 wish.	
 You	
 must	

add	
 a	
 comment	
 in	
 the	
 first	
 line	
 of	
 each	
 metapiga 	
 block	
 in 	
 the	
 form	
 of	
 a 	
 label	
 using	
 [BATCHLABEL =
label].	
 Then,	
 create	
 a	
 batch	
 block	
 that	
 associates 	
 each	
 run	
 to	
 (i)	
 a	
 data 	
 block	
 and	
 (ii)	
 a	
 metapiga	

block	
 using	
 those	
 labels.	
 The	
 use	
 of	
 a	
 tree	
 block	
 is	
 opNonal.
For	
 example,	
 to	
 run	
 a	
 given	
 dataset	
 with	
 2	
 different	
 sets 	
 of	
 parameters 	
 (the	
 second	
 requiring	
 user-­‐
defined	
 starNng	
 trees),	
 the	
 batch	
 file	
 will	
 look	
 like	
 this:
BEGIN BATCH;

RUN LABEL=’run1’ DATA=label1 PARAM=label1;
RUN LABEL=’run2’ DATA=label1 PARAM=label2 TREE=label2;

END;
BEGIN METAPIGA; [BATCHLABEL = label1]
…
END;
BEGIN METAPIGA; [BATCHLABEL = label2]
…
END;
BEGIN DATA; [BATCHLABEL = label1]
…
END;
BEGIN TREE; [BATCHLABEL = label2]
…
END;

MetaPIGA 3.0 manual p41

BATCH Block
BEGIN BATCH;
RUN LABEL=’run_label’ DATA=data_block_label
PARAM=metapiga_block_label [TREES=tree_block_label];
RUN …

END;

METAPIGA Block
BEGIN METAPIGA;

 [HEURISTIC
‘HC [RESTART = nbr_of_restart]
| SA [COOLINGSCHEDULE = ‘LUNDY | RP(delta) | CAUCHY | BOLTZMANN | GEOM(alpha)
| LIN | TRI | POLY | EXP | LOG | PER | SPER | TANH | COSH’] [LunC = lundy_c]
[LunALPHA = lundy_a] [INITACCEPT = value] [FINALACCEPT = value] [DELTAL =
‘PERCENT[(P)] | BURNIN’] [REHEATING = ‘DECREMENTS(d) | THRESHOLD(p) | NEVER’]
[COOLING = ‘STEPS(steps) | SF(s,f)’] [DYNCS]
| GA [NIND = individuals] [SELECTION = ‘RANK | TOURNAMENT | REPLACEMENT[(S)]
| IMPROVE | KEEPBEST’] [RECOMBINATION = rate] [OPERATORAPPLIEDTO = ‘STEP |
IND’]
| CP [CONSENSUS = ‘STRICT | STOCHASTIC’] [OPERATOR = BLIND | SUPERVISED] [NPOP
= populations] [NIND = individuals] [TOLERANCE = tolerance] [HYBRIDIZATION
= rate] [SELECTION = ‘RANK | TOURNAMENT | REPLACEMENT[(S)] | IMPROVE | KEEP-
BEST’] [RECOMBINATION = rate] [OPERATORAPPLIEDTO = ‘STEP | POP | IND’] [NCORE
= cores]’ ;]

[EVALUATION [RATE = ‘BRANCH | TREE’] [DATATYPE=CODON CODONRANGE{start_position-
end_position}] [MODEL = ‘GTR | TN93 | HKY85 | K2P | JC | GTR20 | WAG |
JTT | DAYHOFF | VT | BLOSUM62 | CPREV | MTREV | RTREV | MTMAM | POISSON
| GTR2 | ECM | GY’] [] [RATEPARAM {param(value) …}] [AAFREQ = ‘EMPIRICAL |
ESTIMATED’] [DISTRIBUTION = ‘NONE | GAMMA(subsets) | VDP(subsets)’] [DIST-
SHAPE = shape] [PINV = proportion_of_invariant];]

[SPECIFICPARTPARAM PARTNAME = charset-name [RATEPARAM {param(value) …}] [DIST-
SHAPE = shape] [PINV = proportion_of_invariant];]

[OPTIMIZATION ‘NEVER | CONSENSUSTREE | ENDSEARCH | DISC(s) | STOCH(p)’ [ALGO =
algorithm] [TARGET {param …}] ;]

[STARTINGTREE [GENERATION = ‘NJ, LNJ(range), RANDOM, GIVEN’] [MODEL = ‘GTR |
TN93 | HKY85 | K2P | JC | GTR20 | POISSON | GTR2 | NONE’] [DISTRIBUTION =
‘NONE | GAMMA(shape)| VDP(subsets)’] [PINV = invariant] [PI = ‘EQUAL |
ESTIMATED | CONSTANT’];]

[OPERATORS {operator[(parameter)] [operator[(parameter)] …]} [SELECTION =
‘RANDOM | ORDERED | FREQLIST’] ;]

[FREQUENCIES {operator(frequency) …} ;]
[DYNAMICFREQ DYNOPERATORS {operator …} [DINT = interval] [DMIN = minimum_fre-

quency];]
[SETTINGS [REMOVECOL = ‘NONE | GAP | NGAP’] [DIR = ’output_directory’] [LABEL

= ’run_label’] [GRID [SERVER = address] [CLIENT = id] [MODULE = id]];]
[STOPAFTER [STEPS = steps] [TIME = hours] [AUTO = steps [AUTOTHRESHOLD =

value]] [CONSENSUS [MRE = error] [GENERATION = steps] [INTERVAL = steps]]
[NECESSARY {stop_condition …}];]

[REPLICATES [AUTOSTOP = ‘NONE | MRE[(error)]’] [RNUM = nbr_rep] [RMIN =
nbr_rep] [RMAX = nbr_rep] [INTERVAL = interval] [PARALLEL = cores];]

[OUTGROUP {taxa …} ;]
[DELETE {taxa …} ;]
[CHARSET NAME = charset-name SET{character-set …} ;] …
[EXCLUDE {charset …} ;]
[PARTITION {charset …} ;]
[LOG {logFile …} ;]

END;

MetaPIGA 3.0 manual p42

Description of the parameters:

1. HEURISTIC –	
 By	
 default,	
 Metapiga	
 uses	
 the	
 metaGA	
 heurisNc	
 (i.e.,	
 a	
 geneNc	
 algorithm	
 with	
 consensus	
 pruning;	

see	
 Lemmon	
 &	
 Milinkovitch	
 2002	
 for	
 details).	

• HC –	
 Hill	
 Climbing.	
 Tree	
 space	
 is	
 explored	
 using	
 local	
 perturbaNons	
 (of	
 topology	
 and/or	
 branch	
 lengths	

and/or	
 model	
 parameters).	
 New	
 trees	
 with	
 improved	
 likelihood	
 are	
 always	
 accepted	
 whereas	
 trees	
 with	

worse	
 score	
 are	
 always	
 discarded.	
 This	
 is	
 the	
 ‘stochasNc	
 hill	
 climbing’	
 heurisNc.	
 We also implement a meta-
heuristic called 'random-restart hill climbing'. When the RESTART	
 parameter	
 is	
 set	
 to	
 a	
 value	
 greater	
 than	
 0,
RESTART+1	
 hill climbings are iteratively performed, each time with a different initial tree. Among the RE-
START+1 solution trees, only the best is kept.
Note that, when choosing the ‘Neighbor Joining’ starting-tree option (see STARTINGTREE parameter), the NJ
tree will only be used for the first hill climbing, and Loose NJ trees will be generated for all restarts. Like-
wise, when choosing 'user trees' but the number of provided starting trees is smaller than RESTART+1, LNJ
random trees will be generated for the missing starting trees. Note also that the stop conditions (see	
 STOPAF-
TER parameter) are defined for one hill climbing. For example, when choosing 10 restarts and ‘2000 steps’
as the stop condition, 11 hill climbing of 2000 steps will be performed, but only the best scored tree, among
the 11 results, will be kept.

• SA – Simulated	
 Annealing.	
 StarNng	
 from	
 a	
 single	
 tree,	
 tree	
 space	
 is	
 explored	
 using	
 local	
 perturbaNons	
 (of	

topology	
 and/or	
 branch	
 lengths	
 and/or	
 model	
 parameters).	
 New	
 trees	
 with	
 improved	
 likelihood	
 are	
 always	

accepted,	
 whereas	
 trees	
 with	
 worse	
 score	
 are	
 accepted	
 with	
 a	
 probability	
 	
 which	
 is	
 a	
 funcNon	
 of	
 both	
 the	

proporNonate	
 decrease	
 in	
 score	
 and	
 a	
 control	
 parameter	
 called	
 "temperature".	
 Much	
 addiNonal	
 informa-­‐
Non	
 is	
 available	
 in	
 Kirkpatrick	
 et	
 al.,	
 OpNmizaNon	
 by	
 Simulated	
 Annealing,	
 Science,	
 220,	
 4598,	
 671-­‐680	

(1983).

§ SCHEDULE – The	
 “cooling	
 schedule”	
 describes	
 how	
 the	
 “temperature”	
 decreases	
 during	
 the	
 run.
	
 is	
 the	
 temperature	
 aker	
 	
 decrements	
 and	
 	
 is	
 the	
 maximum	
 number	
 of	
 temperature	
 decrements	
 be-­‐
fore	
 reseNng	
 the	
 temperature	
 to	
 the	
 starNng	
 temperature	
 	
 (see	
 REHEATING parameter	

below).Except	
 for	
 the	
 LUNDY	
 cooling	
 schedule,	
 	
 (and	
 when	
 it	
 applies)	
 are	
 computed	
 as	
 follows:
where	
 	
 is	
 an	
 upper	
 bound	
 on	
 the	
 change	
 in	
 likelihood,	
 	
 is	
 the	
 iniNal	
 and	
 	
 the	
 final	
 acceptance	
 parame-­‐
ters	
 (see	
 below).Available	
 schedules	
 are	
 :

o LUNDY - The	
 cooling	
 schedule	
 described	
 by	
 Lundy	
 (1985).	

with	
 	
 	

being	
 the	
 parameter	
 that	
 controls	
 the	
 rate	
 of	
 cooling	
 (its	
 value	
 is	
 <	
 1)	
 where	
 	
 is	
 the	
 number	
 of	

sequences,	
 (taxa)	
 is	
 the	
 number	
 of	
 sites,	
 and	
 	
 are	
 set	
 between	
 0	
 and	
 1	
 (see	
 C	
 and	
 ALPHA	
 pa-­‐
rameters	
 below)	
 and	
 	
 is	
 the	
 log	
 likelihood	
 of	
 the	
 neighbor	
 joining	
 tree.	
 It’s	
 the	
 default	
 cooling	

schedule.

o RP(delta) – A	
 raNo-­‐percent	
 cooling	
 schedule.	

o CAUCHY – Fast	
 Cauchy	
 schedule.	

o BOLTZMANN – Boltzmann	
 schedule.
o GEOM(alpha) – Geometric	
 schedule.	

o LIN – Linear	
 schedule.	

o TRI – Triangular	
 schedule.	

o POLY – Polynomial	
 schedule.	

o EXP – Transcendental	
 (exponenNal)	
 schedule.	

o LOG – Transcendental	
 (logarithmic)	
 schedule.	

o PER – Transcendental	
 (periodic)	
 schedule.
o SPER – Transcendental	
 (smoothed	
 periodic)	
 schedule.	

o TANH – Hyperbolic	
 (tanh)	
 schedule.	

o COSH – Hyperbolic	
 (cosh)	
 schedule.	

§ LUNC – The	
 parameter	
 	
 used	
 in	
 the	
 LUNDY	
 cooling	
 schedule.	
 You	
 can	
 set	
 its	
 value	
 between	
 [0,1]	
 and	

the	
 default	
 value	
 is	
 0.5.

§ LUNALPHA – The	
 parameter	
 	
 used	
 in	
 the	
 LUNDY	
 cooling	
 schedule.	
 You	
 can	
 set	
 its	
 value	
 between	
 [0,1]	

and	
 the	
 default	
 value	
 is	
 0.5.

MetaPIGA 3.0 manual p43

§ INITACCEPT – It’s	
 the	
 iniNal	
 maximum	
 probability	
 ()	
 to	
 accept	
 a	
 tree	
 with	
 a	
 ‘worse’	
 likelihood.	

Hence,	
 it	
 will	
 define	
 the	
 starNng	
 temperature	
 used	
 when	
 simulated	
 annealing	
 starts	
 or	
 when	
 the	

temperature	
 is	
 reset	
 (see	
 REHEATING below).	
 It’s	
 a	
 probability,	
 chosen	
 between	
 [0,	
 1],	
 is	
 set	
 to	
 0.7	

by	
 default.	
 Used	
 with	
 all	
 cooling	
 schedules	
 except	
 LUNDY.

§ FINALACCEPT – It’s	
 the	
 final	
 maximum	
 probability	
 to	
 accept	
 a	
 tree	
 with	
 a	
 ‘worse’	
 likelihood	
 (),	
 so	
 it	

will	
 define	
 the	
 ending	
 temperature	
 used	
 when	
 simulated	
 annealing	
 should	
 end	
 or	
 before	
 reseNng	

the	
 temperature	
 (see	
 REHEATING below).	
 It’s	
 a	
 probability,	
 chosen	
 between	
 [0,	
 1],	
 must	
 be	
 smaller	

than	
 INITACCEPT	
 and	
 is	
 set	
 to	
 0.01	
 by	
 default.	
 Only	
 used	
 with	
 LIN,	
 TRI,	
 POLY,	
 EXP,	
 LOG,	
 PER,	
 SPER,	

HYPTANH and	
 HYPCOSH cooling	
 schedules.

§ DELTAL – Determines	
 how	
 	
 is	
 iniNalized.	
 	
 is	
 used	
 to	
 compute	
 the	
 starNng	
 temperature,	
 and	
 is	
 the	

maximum	
 distance	
 between	
 a	
 current	
 soluNon	
 and	
 a	
 worse	
 soluNon	
 that	
 could	
 be	
 accepted	
 with	
 a	

probability	
 of	
 .

o PERCENT(p) – 	
 is	
 set	
 to	
 a	
 percentage	
 p	
 of	
 the	
 Neighbor	
 Joining	
 Tree	
 log	
 likelihood.	
 You	
 can	

set	
 the	
 value	
 of	
 p	
 between	
 [0,1]	
 and	
 the	
 default	
 is	
 0.001	
 (0.1%	
 of	
 the	
 NJT).	

o BURNIN – Selected	
 operators	
 are	
 used	
 on	
 the	
 starNng	
 tree	
 for	
 a	
 burn-­‐in	
 period	
 of	
 20	
 appli-­‐
caNons	
 for	
 each	
 operator.	
 The	
 maximum	
 change	
 in	
 log	
 likelihood	
 observed	
 during	
 this	
 period	

is	
 used	
 as	
 .

§ REHEATING – Determines	
 under	
 which	
 condiNon	
 the	
 temperature	
 is	
 reset	
 to	
 the	
 iniNal	
 starNng	

temperature.

o NEVER – Temperature	
 is	
 never	
 reset,	
 but	
 this	
 opNon	
 can	
 only	
 be	
 selected	
 with	
 LUNDY,	
 RP,	

CAUCHY,	
 BOLTZMANN and	
 GEOMETRIC cooling	
 schedules.

o DECREMENTS(d) – Temperature	
 is	
 reset	
 when	
 it	
 has	
 decreased	
 d	
 Nmes.	
 It’s	
 the	
 default	
 RE-
HEATING opNon,	
 usable	
 with	
 all	
 cooling	
 schedules.

o THRESHOLD(p) – Temperature	
 is	
 reset	
 when	
 it	
 aTains	
 a	
 threshold	
 equal	
 to	
 	
 Note	
 that	
 	
 must	

be	
 smaller	
 than	
 1	
 and	
 sufficiently	
 small	
 (0.001	
 is	
 the	
 default	
 value).	
 This	
 REHEATING opNon	

can	
 only	
 be	
 used	
 with	
 LUNDY,	
 RP,	
 CAUCHY,	
 BOLTZMANN and	
 GEOMETRIC cooling	
 schedules.

§ COOLING – Establishes	
 the	
 number	
 of	
 Nmes	
 a	
 tree	
 is	
 modified	
 before	
 the	
 temperature	
 is	
 decreased.	

You	
 can	
 choose	
 between	
 2	
 cooling	
 types:

o 	
 STEPS(steps) – Stay	
 at	
 the	
 same	
 temperature	
 for	
 a	
 given	
 number	
 of	
 steps.	
 	

o SF(s,f) – Lower	
 the	
 temperature	
 aker	
 s	
 successes	
 or	
 f	
 failures,	
 whichever	
 comes	
 first.	

Successes	
 are	
 tree	
 modificaNons	
 that	
 improve	
 the	
 likelihood	
 and	
 failures	
 are	
 those	
 that	
 do	

not.	
 This	
 COOLING	
 is	
 used	
 by	
 default,	
 with	
 s	
 =10	
 and	
 f	
 =100.

• GA – Gene4c	
 Algorithm. At	
 each	
 step	
 (generaNon)	
 of	
 the	
 heurisNc,	
 each	
 individual	
 of	
 a	
 populaNon	
 of	

trees	
 is	
 mutated	
 using	
 the	
 selected	
 operators.	
 Death	
 /	
 survival	
 of	
 individuals	
 is	
 controlled	
 using	
 a	
 selecNon	

scheme.

§ NIND – The	
 number	
 of	
 individuals	
 (trees)	
 within	
 the	
 populaNon	
 (set).	
 Set	
 to	
 8	
 by	
 default.
§ SELECTION – The	
 method	
 used	
 to	
 control	
 death	
 /	
 survival	
 of	
 individuals	
 :

o RANK – We	
 implement	
 a	
 rank	
 selecNon	
 similar	
 to	
 that	
 described	
 in	
 (Lewis	
 1998,	
 Mol.	
 Biol.	

Evol.	
 15,	
 277-­‐283).	
 The	
 individual	
 having	
 the	
 highest	
 lnL	
 is	
 automaNcally	
 allowed	
 to	
 leave	

k=0.25*NIND	
 offspring	
 (i.e.,	
 copies	
 of	
 itself)	
 in	
 the	
 next	
 generaNon.	
 Then,	
 each	
 individual	
 is	

assigned	
 a	
 probability	
 p	
 of	
 leaving	
 an	
 offspring	
 as	
 a	
 funcNon	
 of	
 its	
 posiNon	
 in	
 a	
 list	
 in	
 which	

individuals	
 are	
 ranked	
 by	
 their	
 score.	
 The	
 probability	
 p	
 for	
 the	
 ith	
 individual	
 of	
 leaving	
 an	
 off-­‐
spring	
 to	
 the	
 next	
 generaNon	
 is	
 equal	
 to:

o TOURNAMENT – Two	
 individuals	
 are	
 drawn	
 randomly	
 from	
 the	
 populaNon	
 of	
 n	
 individuals,	
 and	

one	
 offspring	
 is	
 produced	
 from	
 the	
 individual	
 with	
 higher	
 score.	
 Both	
 trees	
 are	
 then	
 placed	

back	
 into	
 the	
 maNng	
 populaNon,	
 and	
 the	
 whole	
 process	
 is	
 repeated	
 unNl	
 n	
 offspring	
 have	

been	
 generated.	
 This	
 is	
 the	
 default	
 selecNon	
 method.

o REPLACEMENT – Two	
 individuals	
 are	
 drawn	
 randomly	
 from	
 the	
 populaNon	
 of	
 n	
 individuals	

and	
 two	
 copies	
 of	
 the	
 beTer	
 individual	
 are	
 returned	
 to	
 the	
 maNng	
 pool	
 (parents	
 are	
 dis-­‐
carded).	
 The	
 process	
 is	
 repeated	
 sn	
 Nmes,	
 where	
 s	
 is	
 the	
 strength	
 of	
 the	
 selecNon	
 (1.0	
 by	
 de-­‐
fault),	
 then	
 the	
 offspring	
 populaNon	
 is	
 generated	
 as	
 an	
 exact	
 copy	
 of	
 the	
 post-­‐selecNon	
 par-­‐
ent	
 populaNon.

o IMPROVE –	
 Only	
 those	
 individuals	
 that	
 have	
 scores	
 beTer	
 than	
 that	
 of	
 the	
 best	
 tree	
 from	
 the	

previous	
 generaNon	
 are	
 kept.	
 Each	
 individual	
 that	
 fails	
 this	
 test	
 is	
 discarded	
 and	
 replaced	
 by	
 a	

copy	
 of	
 the	
 current	
 best	
 individual.	

MetaPIGA 3.0 manual p44

o KEEPBEST – Only	
 the	
 best	
 individual	
 of	
 each	
 populaNon	
 is	
 kept,	
 others	
 are	
 replaced	
 by	
 a	

copy	
 of	
 it.

§ RECOMBINATION	
 – Each	
 counter-­‐selected	
 sub-­‐opNmal	
 individual	
 has	
 a	
 probability	
 p	
 (between	
 [0,	
 1]	

and	
 set	
 to	
 0.1	
 by	
 default)	
 to	
 recombine	
 with	
 a	
 beTer	
 individual	
 in	
 the	
 populaNon.	
 RecombinaNon	
 is	

performed	
 by	
 exchanging	
 subtrees	
 defined	
 by	
 one	
 of	
 the	
 idenNcal	
 taxa	
 parNNons	
 in	
 the	
 two	
 parental	

trees	
 (i.e.,	
 one	
 internal	
 branch	
 that	
 defines	
 subtrees	
 including	
 the	
 same	
 taxa	
 but	
 with	
 potenNally	

different	
 sub-­‐topologies).	
 If	
 no	
 common	
 branch	
 exists,	
 the	
 offspring	
 is	
 defined	
 as	
 a	
 copy	
 of	
 the	
 best	

individual.	
 A	
 recombinaNon	
 event	
 can	
 be	
 viewed	
 as	
 a	
 large	
 number	
 of	
 simultaneous	
 topological	
 mu-­‐
taNons.	
 The	
 exact	
 procedure	
 depends	
 on	
 the	
 selecNon	
 scheme:

o RANK – RecombinaNon	
 is	
 not	
 available	
 under	
 that	
 selecNon	
 scheme.
o TOURNAMENT – With	
 a	
 probability	
 p,	
 the	
 offspring	
 set	
 aker	
 a	
 tournament	
 is	
 not	
 a	
 copy	
 the	

individual	
 with	
 higher	
 score	
 but	
 a	
 recombinaNon	
 between	
 the	
 two	
 trees	
 that	
 have	
 been	
 ini-­‐
Nally	
 drawn	
 for	
 tournament.

o REPLACEMENT – With	
 a	
 probability	
 p,	
 only	
 one	
 (instead	
 of	
 two)	
 copy	
 of	
 the	
 beTer	
 individual	

is	
 returned	
 to	
 the	
 maNng	
 pool.	
 The	
 second	
 individual	
 returned	
 is	
 a	
 recombinaNon	
 between	

the	
 two	
 trees	
 that	
 have	
 been	
 iniNally	
 drawn.

o IMPROVE –	
 Each	
 individual	
 that	
 does	
 not	
 have	
 a	
 score	
 beTer	
 than	
 that	
 of	
 the	
 best	
 tree	
 from	

the	
 previous	
 generaNon	
 has	
 a	
 probability	
 p	
 of	
 of	
 leaving	
 an	
 offspring	
 by	
 recombining	
 with	
 the	

current	
 best	
 individual.	

o KEEPBEST – Each	
 individual	
 that	
 does	
 not	
 have	
 a	
 score	
 beTer	
 than	
 that	
 of	
 the	
 best	
 current	

individual	
 has	
 a	
 probability	
 p	
 of	
 of	
 leaving	
 an	
 offspring	
 by	
 recombining	
 with	
 the	
 current	
 best	

individual.

§OPERATORAPPLIEDTO – IND is	
 the	
 default
o STEP – At	
 each	
 step	
 of	
 the	
 heurisNc,	
 a	
 single	
 mutaNon	
 operator	
 is	
 selected	
 and	
 applied	
 to	

each	
 tree	
 of	
 each	
 populaNon.
o IND – At	
 each	
 step	
 of	
 the	
 heurisNc,	
 each	
 individual	
 is	
 separately	
 assigned	
 a	
 mutaNon	
 opera-­‐

tor.
• CP – Consensus	
 pruning	
 (MetaGA). This	
 is	
 the	
 core	
 of	
 the	
 "metaPopulaNon	
 geneNc	
 Algorithm"	
 (Lemmon	

&	
 Milinkovitch,	
 PNAS	
 99:10516-­‐10521	
 (2002)):	
 P	
 sets	
 (populaNons)	
 containing	
 each	
 I	
 trees	
 (individuals)	
 are	

forced	
 to	
 cooperate	
 in	
 the	
 search	
 for	
 the	
 opNmal	
 trees.	
 At	
 each	
 step	
 (generaNon)	
 of	
 the	
 heurisNc,	
 individu-­‐
als	
 are	
 mutated	
 following	
 inter-­‐populaNons	
 consensus	
 rules.	
 Death	
 /	
 survival	
 of	
 individuals	
 is	
 defined	
 using	

a	
 selecNon	
 scheme.

§ CONSENSUS – STOCHASTIC is	
 chosen	
 by	
 default
o STRICT – Any	
 branch	
 shared	
 by	
 all	
 trees	
 across	
 all	
 populaNons	
 (100%	
 consensus)	
 will	
 not	
 be	

mutated.	
 MutaNons	
 on	
 any	
 other	
 branch	
 will	
 be	
 unconstrained.	

o STOCHASTIC – Each	
 branch	
 (parNNon)	
 common	
 to	
 at	
 least	
 two	
 trees	
 will	
 be	
 assigned	
 a	
 con-­‐

sensus	
 value.	
 The	
 probability	
 of	
 any	
 mutaNon	
 affecNng	
 that	
 parNNon	
 is	
 1-­‐(consensus	

value).Example:	
 if	
 a	
 given	
 branch	
 is	
 shared	
 by	
 12	
 among	
 16	
 trees	
 (e.g.,	
 4	
 populaNons	
 of	
 4	
 in-­‐
dividuals	
 each),	
 any	
 mutaNon	
 affecNng	
 that	
 branch	
 will	
 be	
 accepted	
 with	
 a	
 probability	
 of	
 0.25.	

A	
 branch	
 shared	
 by	
 all	
 trees	
 will	
 never	
 be	
 mutated.

§ OPERATOR – If	
 operator	
 is	
 set	
 to	
 BLIND,	
 a	
 mutaNon	
 breaking	
 a	
 consensus	
 won’t	
 be	
 applied	
 and	
 the	

tree	
 will	
 remain	
 unchanged	
 unNl	
 the	
 next	
 mutaNon	
 (at	
 generaNon	
 i+1).	
 If	
 operator	
 is	
 set	
 to	
 SUPER-
VISED,	
 the	
 operator	
 will	
 search	
 for	
 candidate	
 mutaNons	
 that	
 don’t	
 break	
 any	
 consensus.	
 If	
 no	
 such	

candidate	
 exists,	
 no	
 mutaNon	
 is	
 performed	
 and	
 the	
 tree	
 will	
 remain	
 unchanged	
 unNl	
 the	
 next	
 gen-­‐
eraNon.

§ NPOP – The	
 number	
 of	
 populaNons	
 (sets).	
 Set	
 to	
 4	
 by	
 default.
§ NIND – The	
 number	
 of	
 individuals	
 (trees)	
 within	
 each	
 populaNon	
 (set).	
 Set	
 to	
 4	
 by	
 default.
§ TOLERANCE – The	
 CONSENSUS	
 command	
 constrains	
 how	
 shared	
 branches	
 are	
 modified.	
 The	
 TOLER-

ANCE	
 parameter	
 avoids	
 parNNons	
 to	
 become	
 "frozen",	
 i.e.,	
 inaccessible	
 to	
 mutaNons.	
 The	
 TOLERANCE
parameter	
 helps	
 avoiding	
 to	
 be	
 trapped	
 in	
 a	
 possible	
 local	
 opNmum.	
 Set	
 to	
 0.5	
 by	
 default.Example:	

With	
 "strict	
 consensus"	
 and	
 a	
 tolerance	
 of	
 0.1,	
 any	
 branch	
 shared	
 by	
 all	
 trees	
 is	
 anyway	
 mutated	
 with	

a	
 probability	
 of	
 0.1.

§ HYBRIDIZATION – At	
 each	
 generaNon,	
 there	
 is	
 a	
 probability	
 (between	
 [0,	
 1]	
 and	
 set	
 to	
 0.1	
 by	
 de-­‐
fault)	
 that	
 all	
 sub-­‐opNmal	
 individuals	
 from	
 one	
 random	
 populaNon	
 are	
 not	
 mutated	
 but,	
 instead,	
 are	

MetaPIGA 3.0 manual p45

recombined	
 with	
 one	
 individual	
 from	
 another	
 populaNon;	
 sub-­‐opNmal	
 individuals	
 from	
 other	
 popu-­‐
laNons	
 experience	
 the	
 normal	
 mutaNon	
 procedure.

§ SELECTION – The	
 method	
 used	
 to	
 control	
 death	
 /	
 survival	
 of	
 individuals	
 :
o RANK – We	
 implement	
 a	
 rank	
 selecNon	
 similar	
 to	
 that	
 described	
 in	
 (Lewis	
 1998,	
 Mol.	
 Biol.	

Evol.	
 15,	
 277-­‐283).	
 The	
 individual	
 having	
 the	
 highest	
 lnL	
 is	
 automaNcally	
 allowed	
 to	
 leave	

k=0.25*NIND	
 offspring	
 (i.e.,	
 copies	
 of	
 itself)	
 in	
 the	
 next	
 generaNon.	
 Then,	
 each	
 individual	
 is	

assigned	
 a	
 probability	
 p	
 of	
 leaving	
 an	
 offspring	
 as	
 a	
 funcNon	
 of	
 its	
 posiNon	
 in	
 a	
 list	
 in	
 which	

individuals	
 are	
 ranked	
 by	
 their	
 score.	
 The	
 probability	
 p	
 for	
 the	
 ith	
 individual	
 of	
 leaving	
 an	
 off-­‐
spring	
 to	
 the	
 next	
 generaNon	
 is	
 equal	
 to:

o TOURNAMENT – Two	
 individuals	
 are	
 drawn	
 randomly	
 from	
 the	
 populaNon	
 of	
 n	
 individuals,	
 and	

one	
 offspring	
 is	
 produced	
 from	
 the	
 individual	
 with	
 higher	
 score.	
 Both	
 trees	
 are	
 then	
 placed	

back	
 into	
 the	
 maNng	
 populaNon,	
 and	
 the	
 whole	
 process	
 is	
 repeated	
 unNl	
 n	
 offspring	
 have	

been	
 generated.

o REPLACEMENT – Two	
 individuals	
 are	
 drawn	
 randomly	
 from	
 the	
 populaNon	
 of	
 n	
 individuals	

and	
 two	
 copies	
 of	
 the	
 beTer	
 individual	
 are	
 returned	
 to	
 the	
 maNng	
 pool	
 (parents	
 are	
 dis-­‐
carded).	
 The	
 process	
 is	
 repeated	
 sn	
 Nmes,	
 where	
 s	
 is	
 the	
 strength	
 of	
 the	
 selecNon	
 (1.0	
 by	
 de-­‐
fault),	
 then	
 the	
 offspring	
 populaNon	
 is	
 generated	
 as	
 an	
 exact	
 copy	
 of	
 the	
 post-­‐selecNon	
 par-­‐
ent	
 populaNon.

o IMPROVE –	
 Only	
 those	
 individuals	
 that	
 have	
 scores	
 beTer	
 than	
 that	
 of	
 the	
 best	
 tree	
 from	
 the	

previous	
 generaNon	
 are	
 kept.	
 Each	
 individual	
 that	
 fails	
 this	
 test	
 is	
 discarded	
 and	
 replaced	
 by	
 a	

copy	
 of	
 the	
 current	
 best	
 individual.	
 This	
 is	
 the	
 default	
 selecNon	
 method.	

o KEEPBEST – Only	
 the	
 best	
 individual	
 of	
 each	
 populaNon	
 is	
 kept,	
 others	
 are	
 replaced	
 by	
 a	

copy	
 of	
 it.

§ RECOMBINATION – Each	
 counter-­‐selected	
 sub-­‐opNmal	
 individual	
 has	
 a	
 probability	
 p	
 (between	
 [0,	
 1]	

and	
 set	
 to	
 0.1	
 by	
 default)	
 to	
 recombine	
 with	
 a	
 beTer	
 individual	
 in	
 the	
 populaNon.	
 RecombinaNon	
 is	

performed	
 by	
 exchanging	
 subtrees	
 defined	
 by	
 one	
 of	
 the	
 idenNcal	
 taxa	
 parNNons	
 in	
 the	
 two	
 parental	

trees	
 (i.e.,	
 one	
 internal	
 branch	
 that	
 defines	
 subtrees	
 including	
 the	
 same	
 taxa	
 but	
 with	
 potenNally	

different	
 sub-­‐topologies).	
 If	
 no	
 common	
 branch	
 exists,	
 the	
 offspring	
 is	
 defined	
 as	
 a	
 copy	
 of	
 the	
 best	

individual.	
 A	
 recombinaNon	
 event	
 can	
 be	
 viewed	
 as	
 a	
 large	
 number	
 of	
 simultaneous	
 topological	
 mu-­‐
taNons.	
 The	
 exact	
 procedure	
 depends	
 on	
 the	
 selecNon	
 scheme:

o RANK – RecombinaNon	
 is	
 not	
 available	
 under	
 that	
 selecNon	
 scheme.
o TOURNAMENT – With	
 a	
 probability	
 p,	
 the	
 offspring	
 set	
 aker	
 a	
 tournament	
 is	
 not	
 a	
 copy	
 the	

individual	
 with	
 higher	
 score	
 but	
 a	
 recombinaNon	
 between	
 the	
 two	
 trees	
 that	
 have	
 been	
 ini-­‐
Nally	
 drawn	
 for	
 tournament.

o REPLACEMENT – With	
 a	
 probability	
 p,	
 only	
 one	
 (instead	
 of	
 two)	
 copy	
 of	
 the	
 beTer	
 individual	

is	
 returned	
 to	
 the	
 maNng	
 pool.	
 The	
 second	
 individual	
 returned	
 is	
 a	
 recombinaNon	
 between	

the	
 two	
 trees	
 that	
 have	
 been	
 iniNally	
 drawn.

o IMPROVE –	
 Each	
 individual	
 that	
 does	
 not	
 have	
 a	
 score	
 beTer	
 than	
 that	
 of	
 the	
 best	
 tree	
 from	

the	
 previous	
 generaNon	
 has	
 a	
 probability	
 p	
 of	
 of	
 leaving	
 an	
 offspring	
 by	
 recombining	
 with	
 the	

current	
 best	
 individual.	

o KEEPBEST – Each	
 individual	
 that	
 does	
 not	
 have	
 a	
 score	
 beTer	
 than	
 that	
 of	
 the	
 best	
 current	

individual	
 has	
 a	
 probability	
 p	
 of	
 of	
 leaving	
 an	
 offspring	
 by	
 recombining	
 with	
 the	
 current	
 best	

individual.

§ NCORE – The	
 number	
 of	
 cores/processors	
 assigned	
 for	
 parallel	
 processing.	
 Different	
 populaNons	

will	
 be	
 assigned	
 to	
 different	
 cores.	
 Set	
 to	
 1	
 by	
 default	
 (no	
 parallelizaNon).	
 WARNING:	
 this	
 parameter	

should	
 be	
 considered	
 in	
 combinaNon	
 with	
 the	
 PARALLEL parameter	
 (in	
 REPLICATES).	
 It	
 is	
 advised	
 to	

leave	
 the	
 NCORE	
 parameter	
 to	
 1	
 when	
 you	
 perform	
 replicates	
 with	
 parallelizaNon.

§ OPERATORAPPLIEDTO – IND is	
 the	
 default
o STEP – At	
 each	
 step	
 of	
 the	
 heurisNc,	
 a	
 single	
 mutaNon	
 operator	
 is	
 selected	
 and	
 applied	
 to	

each	
 tree	
 of	
 each	
 populaNon.
o POP – At	
 each	
 step	
 of	
 the	
 heurisNc,	
 each	
 populaNon	
 is	
 separately	
 assigned	
 a	
 mutaNon	
 opera-­‐

tor	
 (i.e.,	
 that	
 operator	
 is	
 applied	
 to	
 all	
 individuals	
 within	
 a	
 populaNon).
o IND – At	
 each	
 step	
 of	
 the	
 heurisNc,	
 each	
 individual	
 is	
 separately	
 assigned	
 a	
 mutaNon	
 opera-­‐

tor.

MetaPIGA 3.0 manual p46

2. EVALUATION –	
 By	
 default,	
 MetaPIGA	
 evaluates	
 trees	
 with	
 the	
 maximum	
 likelihood	
 criterion	
 using	
 a	
 single	
 rate	

matrix	
 R	
 for	
 the	
 TREE,	
 the	
 JC	
 model	
 and	
 no	
 rate	
 heterogeneity.	
 Note	
 that	
 if	
 the	
 dataset	
 is	
 parNNoned	
 with	

charsets,	
 some	
 parameters	
 (RATEPARAM, DISTSHAPE, PINV)	
 can	
 be	
 overridden	
 with	
 the	
 SPECIFICPARTPARAM	

command	
 for	
 each	
 parNNon.
• RATE –	
 The	
 rate	
 matrix	
 R	
 (by	
 default,	
 MetaPIGA	
 use	
 one	
 R	
 for	
 the	
 TREE):

§ BRANCH – NOT AVAILABLE YET - A	
 different	
 rate	
 matrix	
 R	
 is	
 used	
 for	
 each	
 branch.	

§ TREE –	
 A	
 single	
 rate	
 matrix	
 R	
 is	
 used	
 across	
 the	
 whole	
 tree.

• DATATYPE=CODON –	
 This	
 token	
 defines	
 that	
 nucleoNdes	
 in	
 this	
 data	
 set	
 should	
 be	
 interpreted	
 as	
 codons.	
 The	

token	
 has	
 to	
 be	
 followed	
 by	
 the	
 CODONRANGE{first_position-last_position} token,	
 where	
 ‘first_position’	

and	
 ‘last_position’	
 define	
 the	
 range	
 of	
 nucleoNde	
 indexes	
 that	
 will	
 be	
 interpreted	
 as	
 codons.

• MODEL –	
 Depending	
 on	
 the	
 datatype	
 (DNA	
 or	
 PROTEIN	
 or	
 STANDARD),	
 the	
 default	
 subsNtuNon	
 model	
 is	
 JC,	

POISSON,	
 or	
 GTR2,	
 respecNvely.	
 You	
 can	
 set	
 subsNtuNon	
 models	
 with:

§ GTR – General-­‐Time-­‐Reversible	
 model	
 for	
 nucleoNdes.
§ HKY85 – Hasegewa-­‐Kishimo-­‐Yano	
 1985	
 model	
 (nucleoNdes).
§ TN93 – Tamura-­‐Nei	
 1993	
 model	
 (nucleoNdes).
§ K2P – Kimura's	
 2	
 Parameter	
 model	
 (nucleoNdes).
§ JC – Jukes	
 Cantor	
 1969	
 model	
 (nucleoNdes).
§ GTR20 –	
 General-­‐Time-­‐Reversible	
 model	
 for	
 proteins.
§ WAG –	
 Wheland	
 and	
 Goldman	
 model	
 (proteins).
§ JTT –	
 Jones-­‐Taylor-­‐Thornton	
 model	
 (proteins).
§ DAYHOFF –	
 Dayhoff	
 model	
 (proteins).
§ VT –	
 Variable	
 Time	
 subsNtuNon	
 matrix	
 (proteins).
§ BLOSUM62 –	
 BLOSUM62	
 (BLOcks	
 of	
 amino	
 acid	
 SUbsNtuNon	
 Matrix)	
 subsNtuNon	
 matrix	
 (proteins).
§ CPREV –	
 Chloroplast	
 reversible	
 subsNtuNon	
 model	
 (proteins).
§ MTREV –	
 Reversible	
 mitochondrial	
 subsNtuNon	
 model	
 (proteins).
§ RTREV –	
 RtREV	
 subsNtuNon	
 matrix	
 (proteins).
§ MTMAM –	
 Mtmam	
 model	
 (for	
 mitochondrial	
 data)	
 (proteins).
§ POISSON –	
 Poisson	
 model	
 (proteins).
§ GTR2 –	
 General-­‐Time-­‐Reversible	
 model	
 for	
 standard	
 binary	
 data.
§ ECM –	
 Empirical	
 codon	
 model	
 for	
 codon	
 data.
§ GY –	
 Goldman-­‐Yang	
 model	
 for	
 codon	
 data.

• RATEPARAM –	
 Set	
 the	
 values	
 of	
 each	
 parameter	
 of	
 the	
 rate	
 matrix	
 R.
§ A | B | C | D | E	
 – The	
 five	
 parameters	
 that	
 can	
 be	
 set	
 with	
 GTR.	
 Set	
 to	
 0.5	
 by	
 default.
§ K – The	
 kappa	
 parameter	
 of	
 K2P	
 and	
 HKY85.	
 Set	
 to	
 0.5	
 by	
 default.
§ K1 |	
 K2	
 – The	
 2	
 parameters	
 of	
 TN93	
 (respecNvely	
 K1 are	
 transiNons	
 between	
 purines,	
 and	
 K2	

transiNons	
 between	
 pyrimidines).	
 Set	
 to	
 0.5	
 by	
 default.
§ AR | AN | AD | … | WY | WV | YV	
 – The	
 189	
 parameters	
 that	
 can	
 be	
 set	
 for	
 GTR20.	
 They	

correspond	
 to	
 the	
 upper	
 right	
 triangle	
 of	
 the	
 GTR	
 subsNtuNon	
 matrix,	
 with	
 the	
 20	
 amino	
 acids	
 or-­‐
dered	
 by	
 alphabeNcal	
 order	
 of	
 their	
 3-­‐leTer	
 names	
 (A	
 R	
 N	
 D	
 C	
 Q	
 E	
 G	
 H	
 I	
 L	
 K	
 M	
 F	
 P	
 S	
 T	
 W	
 Y	
 V).	
 For	
 ex-­‐
ample,	
 A<-­‐>R	
 rate	
 is	
 set	
 using	
 AR	
 parameter	
 (RA	
 will	
 not	
 be	
 recognized).	
 Set	
 to	
 0.5	
 by	
 default.

• AAFREQ –	
 Used	
 for	
 empirical	
 protein	
 models	
 with	
 unequal	
 equilibrium	
 state	
 frequencies	
 (EMPIRICAL	
 by	

default).

§ EMPIRICAL –	
 Equilibrium	
 amino-­‐acid	
 frequencies	
 are	
 fixed	
 to	
 the	
 empirical	
 values	
 reflecNng	
 esN-­‐
mates	
 of	
 the	
 corresponding	
 model.

§ ESTIMATED –	
 	
 Equilibrium	
 amino-­‐acid	
 frequencies	
 are	
 fixed	
 to	
 those	
 observed	
 in	
 the	
 dataset.
• DISTRIBUTION –	
 The	
 rate	
 heterogeneity	
 (none	
 by	
 default).

§ NONE –	
 No	
 rate	
 heterogeneity
§ GAMMA –	
 	
 Rate	
 heterogeneity	
 following	
 a	
 Gamma	
 distribuNon.	
 The	
 number	
 of	
 rate	
 categories	
 (4	
 by	

default)	
 and	
 shape	
 parameter	
 alpha	
 (default=1)	
 can	
 be	
 defined.
• DISTSHAPE - Shape	
 parameter	
 (alpha)	
 of	
 the	
 gamma	
 distribuNon.	
 Set	
 to	
 1.0	
 by	
 default.
• PINV – ProporNon	
 of	
 invariable	
 sites	
 (between	
 0	
 and	
 1).	
 Set	
 to	
 0	
 (no	
 invariant)	
 by	
 default.

3. SPECIFICPARTPARAM –	
 Specific	
 evaluaNon	
 parameters	
 can	
 be	
 set	
 for	
 each	
 charset	
 separately	
 if	
 the	
 dataset	
 is	

parNNoned.	
 If	
 no	
 SPECIFICPARTPARAM	
 is	
 defined	
 for	
 a	
 given	
 parNNon,	
 parameters	
 defined	
 with	
 the	
 EVALUATION	

command	
 will	
 be	
 used.

MetaPIGA 3.0 manual p47

• PARTNAME –	
 The	
 name	
 of	
 the	
 parNNon	
 to	
 which	
 	
 the	
 parameters	
 apply.	
 ATTENTION:	
 the	
 parNNon	
 name	

must	
 always	
 be	
 defined	
 before	
 RATEPARAM,	
 DISTSHAPE	
 and	
 PINV.

• RATEPARAM –	
 Set	
 the	
 value	
 of	
 each	
 parameter	
 of	
 the	
 rate	
 matrix	
 R.
§ A | B | C | D | E	
 – The	
 five	
 parameters	
 that	
 can	
 be	
 set	
 with	
 GTR.	
 Set	
 to	
 0.5	
 by	
 default.
§ K – The	
 kappa	
 parameter	
 of	
 K2P	
 and	
 HKY85.	
 Set	
 to	
 0.5	
 by	
 default.
§ K1 |	
 K2	
 – The	
 2	
 parameters	
 of	
 TN93	
 (respecNvely	
 K1 are	
 transiNons	
 between	
 purines,	
 and	
 K2	

transiNons	
 between	
 pyrimidines).	
 Set	
 to	
 0.5	
 by	
 default.
§ AR | AN | AD | … | WY | WV | YV	
 – The	
 189	
 parameters	
 that	
 can	
 be	
 set	
 for	
 GTR20.	
 They	

correspond	
 to	
 the	
 upper	
 right	
 triangle	
 of	
 the	
 GTR	
 subsNtuNon	
 matrix,	
 with	
 the	
 20	
 amino	
 acids	
 or-­‐
dered	
 by	
 alphabeNcal	
 order	
 of	
 their	
 3-­‐leTer	
 names	
 (A	
 R	
 N	
 D	
 C	
 Q	
 E	
 G	
 H	
 I	
 L	
 K	
 M	
 F	
 P	
 S	
 T	
 W	
 Y	
 V).	
 For	
 ex-­‐
ample,	
 A<-­‐>R	
 rate	
 is	
 set	
 using	
 AR	
 parameter	
 (RA	
 will	
 not	
 be	
 recognized).	
 Set	
 to	
 0.5	
 by	
 default.

• DISTSHAPE - Shape	
 parameter	
 (alpha)	
 of	
 the	
 gamma	
 distribuNon.	
 Set	
 to	
 1.0	
 by	
 default.
• PINV – ProporNon	
 of	
 invariable	
 sites	
 (between	
 0	
 and	
 1).	
 Set	
 to	
 0	
 (no	
 invariant)	
 by	
 default.

4. OPTIMIZATION –	
 For	
 configuring	
 intra-­‐step	
 opNmizaNon	
 frequencies,	
 algorithm	
 and	
 targets.	
 There	
 are	
 5	
 ways	
 of	

choosing	
 when	
 MetaPIGA	
 opNmizes	
 the	
 tree	
 during	
 a	
 heurisNc.	
 With	
 NEVER,	
 no	
 opNmizaNon	
 algorithm	
 is	
 applied.	

With	
 ENDSEARCH,	
 final	
 trees	
 are	
 opNmized	
 at	
 the	
 end	
 of	
 the	
 heurisNc.	
 With	
 CONSENSUSTREE,	
 only	
 the	
 final	
 con-­‐
sensus	
 tree	
 built	
 using	
 all	
 replicates	
 is	
 opNmized	
 (when	
 perfomring	
 single	
 searches,	
 i.e.	
 one	
 single	
 replicate,	
 no	

consensus	
 is	
 built	
 and	
 no	
 intra-­‐step	
 opNmizaNon	
 of	
 target	
 parameters	
 is	
 performed).	
 With	
 STOCH(p),	
 with	
 p	

between	
 [0.01,	
 1],	
 there	
 is	
 a	
 probability	
 p	
 at	
 each	
 step	
 to	
 opNmize	
 the	
 tree.	
 With	
 DISC(s),	
 trees	
 will	
 be	
 opN-­‐
mized	
 every	
 s	
 steps.	
 Note	
 that	
 (1)	
 with	
 STOCH	
 and	
 DISC,	
 opNmizaNon	
 of	
 the	
 final	
 trees	
 is	
 also	
 performed	
 at	
 the	

end	
 of	
 the	
 heurisNc	
 (hence,	
 at	
 the	
 end	
 of	
 each	
 replicate	
 if	
 mulNple	
 replicates	
 are	
 performed)	
 and	
 (2)	
 with	
 END-
SEARCH,	
 STOCH	
 and	
 DISC,	
 the	
 final	
 consensus	
 tree	
 is	
 also	
 opNmized	
 when	
 mulNple	
 replicates	
 are	

performed.You	
 can	
 also	
 set	
 :
• ALGO –	
 Set	
 the	
 algorithm	
 used	
 for	
 intra-­‐step	
 opNmizaNon.

§ GA – GeneNc	
 algorithm.	
 Simple	
 GA	
 without	
 recombinaNon:	
 each	
 tree	
 to	
 be	
 opNmized	
 is	
 copied	
 7	

Nmes	
 and	
 that	
 populaNon	
 of	
 8	
 individuals	
 is	
 experiencing	
 mutaNons	
 (of	
 targets,	
 see	
 below).	
 Selec-­‐
Non	
 is	
 performed	
 with	
 IMPROVE (see	
 above).	
 The	
 GA	
 is	
 stopped	
 when	
 the	
 likelihood	
 remains	
 un-­‐
changed	
 for	
 200	
 steps	
 (generaNons).

§ POWELL – NOT AVAILABLE YET - DirecNon	
 set	
 (Powell’s)	
 method	
 in	
 mulNdimensions,	
 using	
 golden	

secNon	
 search	
 to	
 bracket	
 a	
 minimum	
 of	
 the	
 likelihood	
 funcNon,	
 and	
 Brent’s	
 method	
 to	
 isolate	
 the	

minimum.

§ DFO – NOT AVAILABLE YET - DerivaNve-­‐Free	
 OpNmizaNon.	
 The	
 method	
 used	
 is	
 a	
 trust-­‐region	

algorithm	
 that	
 employs	
 interpolaNon	
 models	
 of	
 degree	
 at	
 most	
 2	
 to	
 build	
 a	
 model	
 of	
 the	
 objecNve	

funcNon.	
 The	
 models	
 are	
 constructed	
 using	
 Newton	
 fundamental	
 polynomials.

• TARGET –	
 Set	
 the	
 targets	
 of	
 the	
 opNmizaNon	
 procedure.	

§ BL – Branch	
 lengths.
§ R – Parameter(s)	
 of	
 the	
 rate	
 matrix	
 R	
 (not	
 relevant	
 with	
 Jukes	
 Cantor	
 model).
§ GAMMA – Shape	
 parameter	
 alpha	
 of	
 the	
 gamma	
 distribuNon	
 (only	
 relevant	
 when	
 rate	
 heterogeneity	

is	
 used).
§ PINV – ProporNon	
 of	
 invariable	
 sites	
 (only	
 relevant	
 when	
 invariant	
 sites	
 are	
 used).
§ APRATE – Among-­‐ParNNon	
 rate	
 variaNon	
 (relaNve	
 branch	
 lengths	
 are	
 only	
 relevant	
 when	
 the	
 data-­‐

set	
 is	
 parNNoned	
 into	
 charsets).
5. STARTINGTREE –	
 Method	
 used	
 to	
 generate	
 the	
 starNng	
 tree(s)	
 for	
 the	
 heurisNc.	
 When	
 using	
 starNng	
 trees	
 gen-­‐

erated	
 by	
 NK	
 or	
 LNJ	
 (see	
 below),	
 a	
 model	
 (and	
 potenNally	
 rate	
 heterogeneity	
 distribuNon	
 and	
 proporNon	
 of	
 in-­‐
variable	
 sites)	
 must	
 also	
 be	
 set	
 for	
 compuNng	
 the	
 distance	
 matrix.
• GENERATION –	
 By	
 default,	
 MetaPIGA	
 uses	
 Loose	
 Neighbor	
 Joining	
 Trees	
 (LNJ)	
 as	
 starNng	
 trees.

§ NJ –	
 StarNng	
 trees	
 are	
 built	
 using	
 the	
 Neighbor	
 Joining	
 method	
 (Saitou	
 &	
 Nei	
 1987).
§ LNJ(range) –	
 Loose	
 Neighbor	
 Joining.	
 Range	
 is	
 a	
 percentage	
 value,	
 that	
 must	
 be	
 greater	
 than	
 0	

and	
 smaller	
 than	
 1.	
 StarNng	
 trees	
 have	
 pseudo-­‐random	
 topologies	
 based	
 on	
 the	
 Neighbor	
 Joining	

algorithm.	
 The	
 classical	
 NJ	
 method	
 joins	
 2	
 nodes	
 having	
 minimal	
 rate-­‐corrected	
 distance.	
 Here,	
 un-­‐
der	
 LNJ,	
 a	
 list	
 containing	
 the	
 (range x (NTax x NTax-1)/2) smaller	
 distances	
 will	
 be	
 built	

and	
 two	
 nodes	
 will	
 be	
 randomly	
 selected	
 from	
 it.Branch	
 lengths	
 are	
 computed	
 normally	
 using	
 the	

Neighbor	
 Joining	
 method	
 (Saitou	
 &	
 Nei	
 1987).If	
 the	
 range parameter	
 is	
 close	
 to	
 0,	
 the	
 LNJ	
 tree	
 will	

be	
 similar	
 to	
 the	
 neighbor	
 joining	
 tree;	
 if	
 it’s	
 close	
 to	
 1,	
 the	
 tree	
 will	
 exhibit	
 essenNally	
 a	
 random	
 to-­‐
pology.

MetaPIGA 3.0 manual p48

§ RANDOM –	
 StarNng	
 trees	
 have	
 random	
 topologies	
 and	
 random	
 branch	
 lengths.	
 No	
 distance	
 matrix	
 is	

used,	
 so	
 you	
 can’t	
 choose	
 a	
 subsNtuNon	
 model	
 or	
 rate	
 distribuNon	
 or	
 proporNon	
 of	
 invariable	
 sites.	

The	
 random	
 topology	
 is	
 generated	
 by	
 starNng	
 with	
 a	
 “root”	
 node	
 with	
 three	
 branches	
 ending	
 each	

with	
 an	
 ‘open	
 slot’.	
 We	
 know	
 the	
 list	
 of	
 available	
 T	
 taxa	
 and	
 we	
 know	
 that	
 the	
 number	
 of	
 internal	

nodes	
 in	
 the	
 final	
 tree	
 will	
 be	
 (T-­‐2-­‐root).	
 The	
 tree	
 generator	
 cycles	
 through	
 the	
 list	
 of	
 open	
 slots.	

Each	
 Nme	
 an	
 open	
 slot	
 is	
 visited,	
 there	
 is	
 a	
 probability	
 p=0.5	
 to	
 fill	
 the	
 slot	
 either	
 with	
 one	
 of	
 the	

available	
 taxa	
 or	
 with	
 one	
 of	
 the	
 available	
 internal	
 nodes	
 (connected	
 to	
 two	
 new	
 branches,	
 each	

ending	
 with	
 an	
 open	
 slot).	
 An	
 internal	
 node	
 is	
 always	
 added	
 if	
 only	
 one	
 open	
 slot	
 remains.	
 The	
 algo-­‐
rithm	
 stops	
 when	
 all	
 internal	
 nodes	
 and	
 taxa	
 have	
 been	
 incorporated.	
 	
 Branch	
 lengths	
 are	
 drawn	

from	
 an	
 exponenNal	
 distribuNon	
 (with	
 λ=1),	
 and	
 shiked	
 by	
 0.001	
 (such	
 that	
 the	
 minimum	
 value	
 is	

0.001	
 and	
 the	
 mean	
 is	
 1.001).

§ GIVEN –	
 User	
 tree(s).	
 If	
 your	
 NEXUS	
 file	
 contains	
 a	
 TREE	
 block	
 (and	
 the	
 command	
 GIVEN	
 is	
 used),	
 and	

if	
 you	
 selected	
 SA	
 or	
 HC	
 as	
 the	
 heurisNc	
 opNon,	
 the	
 first	
 tree	
 in	
 the	
 tree	
 block	
 will	
 be	
 loaded	
 and	

used	
 as	
 starNng	
 tree.	
 If	
 you	
 selected	
 CP	
 as	
 the	
 heurisNc	
 opNon	
 with	
 NPOP	
 populaNons,	
 the	
 NPOP	
 first	

trees	
 in	
 the	
 TREE	
 block	
 will	
 be	
 loaded	
 (one	
 tree	
 per	
 populaNon).	
 If	
 you	
 selected	
 GA	
 as	
 the	
 heurisNc	

opNon,	
 the	
 NIND	
 first	
 trees	
 in	
 the	
 TREE	
 block	
 will	
 be	
 loaded	
 (one	
 tree	
 per	
 individual).	
 More	
 opNons	

for	
 imporNng	
 user	
 starNng	
 trees	
 are	
 available	
 in	
 the	
 GUI	
 (see	
 point	
 5.3.4.	
 in	
 the	
 manual	
 above).

• MODEL –	
 Depending	
 on	
 the	
 datatype	
 (DNA	
 or	
 PROTEIN	
 or	
 STANDARD),	
 the	
 default	
 subsNtuNon	
 model	
 to	

generate	
 distance	
 matrices	
 is	
 JC,	
 POISSON,	
 or	
 GTR2,	
 respecNvely.	
 You	
 can	
 set	
 subsNtuNon	
 models	
 with	
 :

§ GTR – General-­‐Time-­‐Reversible	
 model	
 for	
 nucleoNdes.
§ HKY85 – Hasegewa-­‐Kishimo-­‐Yano	
 1985	
 model	
 (nucleoNdes).
§ TN93 – Tamura-­‐Nei	
 1993	
 model	
 (nucleoNdes).
§ K2P – Kimura's	
 2	
 Parameter	
 model	
 (nucleoNdes).
§ JC – Jukes	
 Cantor	
 1969	
 model	
 (nucleoNdes).
§ GTR20 –	
 General-­‐Time-­‐Reversible	
 model	
 for	
 proteins.
§ POISSON –	
 Poisson	
 model	
 (proteins).
§ GTR2 –	
 General-­‐Time-­‐Reversible	
 model	
 for	
 standard	
 binary	
 data.
§ NONE - No	
 distance	
 matrix.	

• DISTRIBUTION –	
 The	
 rate	
 heterogeneity	
 (none	
 by	
 default)	

§ NONE –	
 No	
 rate	
 heterogeneity.
§ GAMMA –	
 Rate	
 heterogeneity	
 following	
 a	
 Gamma	
 distribuNon.	
 The	
 number	
 of	
 rate	
 categories	
 is	
 fixed	

to	
 4	
 but	
 the	
 shape	
 parameter	
 alpha	
 (default=0.5)	
 can	
 be	
 defined.
• PINV –	
 ProporNon	
 of	
 invariable	
 sites	
 (between	
 0	
 and	
 1).	
 Set	
 to	
 0	
 (no	
 invariant)	
 by	
 default.	
 If	
 PINV	
 >	
 0,	
 the	

total	
 number	
 of	
 sites	
 is	
 adjusted	
 to	
 have	
 distances	
 equal	
 to	
 the	
 mean	
 number	
 of	
 subsNtuNons	
 over	
 variable	

sites	
 only.

• PI –	
 Base	
 composiNon	
 of	
 invariant	
 sites	
 (used	
 only	
 if	
 PINV	
 >	
 0).
§ EQUAL –	
 The	
 invariant	
 sites	
 will	
 have	
 base	
 composiNon	
 equal	
 to	
 0.25.
§ ESTIMATED –	
 The	
 invariant	
 sites	
 base	
 composiNon	
 is	
 set	
 to	
 the	
 average	
 base	
 composiNon	
 across	
 all	

sequences.
§ CONSTANT –	
 (Default)	
 The	
 invariant	
 sites	
 base	
 composiNon	
 is	
 set	
 to	
 the	
 average	
 base	
 composiNon	
 of	

the	
 site	
 which	
 are	
 constant.
6. OPERATORS	
 –	
 Sets	
 the	
 operators	
 used	
 to	
 generate	
 new	
 soluNon	
 trees.	
 You	
 can	
 list	
 more	
 than	
 one	
 operator,	
 and	

some	
 can	
 have	
 specific	
 parameters.	

• SELECTION This	
 keyword	
 can	
 be	
 set	
 to:	

§ ORDERED -	
 Selected	
 operators	
 are	
 chosen	
 one	
 aker	
 another.	

§ RANDOM - (Default)	
 Selected	
 operators	
 are	
 randomly	
 drawn.	

§ FREQLIST - Selected	
 operators	
 are	
 drawn	
 following	
 probabiliNes	
 defined	
 in	
 FREQUENCIES.	

• If	
 OPERATORS	
 parameter	
 is	
 not	
 set,	
 MetaPIGA	
 uses	
 the	
 following	
 operators	
 by	
 default:	
 NNI,	
 BLMINT,
TXS(2), STS(2).	
 	
 Available	
 operators	
 are:

§ NNI (NEAREST-NEIGHBOR INTERCHANGE) - Two	
 grand-­‐children	
 branches	
 of	
 a	
 random	
 internal	

node	
 are	
 swapped.

§ SPR (SUBTREE PRUNING AND REGRAFTING) – Removes	
 a	
 branch	
 from	
 the	
 tree	
 with	
 a	
 subtree	
 at-­‐
tached	
 to	
 it	
 and	
 re-­‐graks	
 the	
 subtree	
 elsewhere.

§ TBR (TREE-BISECTION-RECONNECTION)	
 – Breaks	
 a	
 branch	
 and	
 reconnects	
 each	
 of	
 the	
 two	
 sub-­‐
trees	
 on	
 a	
 random	
 branch.	

MetaPIGA 3.0 manual p49

§ TXS (TAXA SWAP) - Swaps	
 a	
 given	
 number	
 of	
 randomly-­‐chosen	
 leaves	
 (defined	
 between	
 paren-­‐
theses).	
 The	
 value	
 for	
 this	
 operator	
 is	
 a	
 number	
 between	
 2	
 and	
 the	
 number	
 of	
 leaves.	
 You	
 can	
 also	

set	
 the	
 parameter	
 to	
 ALL	
 (swap	
 all	
 leaves)	
 or	
 RANDOM	
 (swap	
 a	
 random	
 number	
 of	
 leaves).	
 If	
 you	
 set	
 a	

number	
 smaller	
 than	
 2,	
 2	
 leaves	
 will	
 be	
 permuted.	
 If	
 you	
 set	
 a	
 number	
 greater	
 than	
 the	
 number	
 of	

leaves,	
 ALL	
 leaves	
 will	
 be	
 permuted.	
 Default	
 parameter	
 is	
 2.

§ STS (SUBTREE SWAP) – By	
 default,	
 swaps	
 two	
 randomly-­‐chosen	
 internal	
 nodes	
 (i.e.,	
 subtrees	

that	
 contain	
 more	
 than	
 one	
 leaf).	
 If	
 the	
 parameter	
 is	
 set	
 to	
 RANDOM	
 instead	
 of	
 2,	
 the	
 whole	
 tree	
 will	

be	
 divided	
 into	
 a	
 random	
 number	
 of	
 subtrees,	
 and	
 all	
 of	
 them	
 will	
 be	
 permuted.

§ BLM (BRANCH LENGTH MUTATION) – Randomly	
 changes	
 the	
 length	
 of	
 a	
 randomly-­‐chosen	
 branch	

by	
 mulNplying	
 the	
 parameter’s	
 value	
 of	
 the	
 previous	
 generaNon	
 by	
 a	
 random	
 number	
 drawn	
 from	
 an	

exponenNal	
 distribuNon	
 (with	
 λ=2),	
 and	
 shiked	
 by	
 0.5	
 (such	
 that	
 the	
 minimum	
 value	
 is	
 0.5	
 and	
 the	

mean	
 is	
 1).

§ BLMINT (BRANCH LENGTH MUTATION ONLY ON INTERNAL BRANCHES) – Randomly	
 changes	
 the	

length	
 or	
 a	
 randomly-­‐chosen	
 internal	
 branch	
 by	
 mulNplying	
 the	
 parameter’s	
 value	
 of	
 the	
 previous	

generaNon	
 by	
 a	
 random	
 number	
 drawn	
 from	
 an	
 exponenNal	
 distribuNon	
 (with	
 λ=2),	
 and	
 shiked	
 by	

0.5	
 (such	
 that	
 the	
 minimum	
 value	
 is	
 0.5	
 and	
 the	
 mean	
 is	
 1).

§ RPM (RATE PARAMETERS MUTATION) –	
 Randomly	
 changes	
 the	
 R	
 matrix	
 values	
 by	
 mulNplying	
 the	

value	
 of	
 the	
 previous	
 generaNon	
 by	
 a	
 random	
 number	
 drawn	
 from	
 an	
 exponenNal	
 distribuNon	
 (with	

λ=2),	
 and	
 shiked	
 by	
 0.5	
 (such	
 that	
 the	
 minimum	
 value	
 is	
 0.5	
 and	
 the	
 mean	
 is	
 1).	
 Parameter	
 for	
 this	

operator	
 is	
 the	
 number	
 of	
 R	
 elements	
 to	
 change	
 (1	
 or	
 ALL).	

§ GDM (GAMMA DISTRIBUTION MUTATION) –	
 Randomly	
 changes	
 the	
 alpha	
 parameter	
 of	
 the	
 Gamma	

distribuNon	
 by	
 mulNplying	
 the	
 parameter’s	
 value	
 of	
 the	
 previous	
 generaNon	
 by	
 a	
 random	
 number	

drawn	
 from	
 an	
 exponenNal	
 distribuNon	
 (with	
 λ=2),	
 and	
 shiked	
 by	
 0.5	
 (such	
 that	
 the	
 minimum	
 value	

is	
 0.5	
 and	
 the	
 mean	
 is	
 1).	
 Only	
 available	
 when	
 gamma-­‐distribuNon	
 rate	
 heterogeneity	
 has	
 been	
 se-­‐
lected.

§ PIM (PROPORTION OF INVARIANT MUTATION) –	
 Randomly	
 changes	
 the	
 proporNon	
 of	
 invariables	

sites	
 by	
 mulNplying	
 the	
 parameter’s	
 value	
 of	
 the	
 previous	
 generaNon	
 by	
 a	
 random	
 number	
 drawn	

from	
 a	
 normal	
 distribuNon	
 (with	
 mean=1	
 and	
 SD=	
 0.5).	
 The	
 resulNng	
 mulNplier	
 is	
 rejected	
 if	
 ≤	

0.4.Only	
 available	
 when	
 proporNon	
 of	
 invariable	
 sites	
 has	
 been	
 selected.

§ APRM (AMONG-PARTITION RATE MUTATION) –	
 Randomly	
 changes	
 the	
 among-­‐parNNon	
 rates	
 for	

relaNve	
 branch	
 lengths	
 by	
 mulNplying	
 the	
 parameter’s	
 value	
 of	
 the	
 previous	
 generaNon	
 by	
 a	
 random	

number	
 drawn	
 from	
 a	
 normal	
 distribuNon	
 (with	
 mean=1	
 and	
 SD=	
 0.5).	
 The	
 resulNng	
 mulNplier	
 is	
 re-­‐
jected	
 if	
 ≤	
 0.4.Only	
 available	
 when	
 the	
 dataset	
 is	
 parNNoned	
 with	
 “charsets”.

7. FREQUENCIES - Used	
 to	
 set	
 the	
 frequencies	
 of	
 operators,	
 using	
 operator(frequency).
8. DYNAMICFREQ – Operators	
 set	
 to	
 dynamic	
 have	
 their	
 probabiliNes	
 of	
 use	
 automaNcally	
 adjusted	
 at	
 every	
 'inter-­‐

val'	
 to	
 reflect	
 their	
 relaNve	
 contribuNons	
 to	
 score	
 improvements	
 (the	
 probability	
 of	
 using	
 a	
 specific	
 operator	
 is	

increased	
 or	
 decreased,	
 if	
 its	
 contribuNon	
 to	
 the	
 score	
 improvement	
 is	
 increased	
 or	
 decreased,	
 respecNvely).You	

can	
 set	
 some	
 parameters	
 for	
 dynamic	
 frequencies:
• DYNOPERATORS	
 –	
 The	
 list	
 of	
 operators	
 is	
 set	
 to	
 dynamic.
• DINT –	
 Interval	
 (in	
 number	
 of	
 steps)	
 used	
 to	
 recompute	
 the	
 frequencies.	
 Set	
 to	
 100	
 by	
 default.
• DMIN –	
 Frequencies	
 can't	
 be	
 decreased	
 under	
 the	
 lower	
 bond	
 .	
 Set	
 to	
 0.04	
 by	
 default.

9. SETTINGS	
 –	
 Some	
 miscellaneous	
 MetaPIGA	
 seMngs	

• REMOVECOL – Set	
 to	
 NONE by	
 default,	
 treaNng	
 gaps	
 ('-­‐')	
 as	
 N	
 (A	
 or	
 C	
 or	
 T	
 or	
 G)	
 in	
 nucleoNde	
 datasets,	
 or	
 as	

X	
 (any	
 amino	
 acid)	
 in	
 protein	
 datasets,	
 or	
 as	
 ?	
 (0	
 or	
 1)	
 in	
 standard	
 datasets.	
 	
 Can	
 be	
 set	
 either	
 to	
 GAP, for	

removing	
 every	
 column	
 containing	
 a	
 gap	
 ('-­‐'),	
 or	
 to	
 NGAP	
 	
 for	
 removing	
 every	
 column	
 containing	
 a	
 gap	
 or	
 a	

N/X/?	
 in	
 nucletoNde/protein/standard	
 datasets.

• DIR –	
 Defines	
 the	
 whole	
 path	
 where	
 the	
 Results	
 folder	
 will	
 be	
 placed.	
 By	
 default,	
 results	
 folders	
 are	
 put	
 in	
 a	

‘MetaPIGA	
 results’	
 folder	
 in	
 your	
 home	
 directory	
 (e.g.	
 ‘My	
 documents’	
 in	
 Windows).	
 If	
 you	
 use	
 the	
 DIR
command	
 in	
 a	
 Nexus	
 file,	
 you	
 MUST	
 put	
 the	
 folder	
 name	
 between	
 quotes.

• LABEL –	
 Defines	
 the	
 name	
 of	
 the	
 Results	
 folder	
 for	
 output	
 files.	
 Changing	
 the	
 label	
 changes	
 the	
 Results	

folder	
 name	
 but	
 not	
 the	
 nexus	
 file	
 name.	
 The	
 Results	
 folder	
 will	
 be	
 placed	
 into	
 the	
 directory	
 defined	
 with	

the	
 DIR	
 command.	
 The	
 Result	
 folder	
 is	
 named	
 with	
 its	
 label	
 followed	
 by	
 the	
 date	
 (year-­‐month-­‐day)	
 and	

followed	
 by	
 the	
 Nme	
 (hour_min_sec)	
 at	
 the	
 which	
 the	
 search	
 was	
 started.	
 This	
 allows	
 for	
 easy	
 differenNa-­‐
Non	
 of	
 results	
 performed	
 at	
 different	
 Nmes	
 on	
 the	
 same	
 dataset.	
 If	
 you	
 use	
 the	
 LABEL command	
 in	
 a	
 Nexus	

file,	
 you	
 MUST	
 put	
 the	
 label	
 name	
 between	
 quotes.

MetaPIGA 3.0 manual p50

• GRID – NOT AVAILABLE YET - MetaPIGA	
 will	
 run	
 through	
 a	
 GRID	
 using	
 the	
 XtremWeb-­‐CH	
 middleware	

(see	
 hTp://www.xtremwebch.net/).	
 You	
 must	
 specify	
 the	
 server	
 address	
 (e.g.	

SERVER=HTTP://ADDRESS:8080),	
 your	
 idenNfier	
 on	
 the	
 GRID	
 (CLIENT	
 command)	
 and	
 the	
 idenNfier	
 of	
 the	

MetaPIGA	
 module	
 on	
 the	
 GRID	
 (MODULE	
 command).	
 Note	
 that	
 when	
 MetaPIGA	
 runs	
 on	
 a	
 GRID,	
 it	
 does	
 not	

generate	
 any	
 log	
 file	
 (LOG command	
 is	
 ignored).	
 GRID	
 running	
 is	
 disabled	
 by	
 default.

10. OUTGROUP –	
 Sets	
 any	
 number	
 of	
 taxa	
 that	
 will	
 form	
 the	
 outgroup	
 (all	
 other	
 taxa	
 are	
 in	
 the	
 ingroup).	
 Operators	

will	
 never	
 mix	
 up	
 taxa	
 between	
 the	
 outgroup	
 and	
 the	
 ingroup.	
 The	
 tree	
 is	
 rooted	
 between	
 outgroup	
 and	
 ingroup.

11. DELETE 	
 –	
 Sets	
 any	
 number	
 of	
 taxa	
 that	
 will	
 be	
 removed	
 from	
 the	
 analysis.
12. CHARSET – Defines	
 a	
 charset	
 ;	
 you	
 must	
 use	
 a	
 different	
 CHARSET command	
 for	
 each	
 charset	
 to	
 be	
 defined.	
 For	

each	
 one,	
 you	
 must	
 give	
 its	
 NAME and	
 a	
 list	
 of	
 character	
 posiNons	
 with	
 SET.	
 For	
 defining	
 a	
 range	
 of	
 character	
 po-­‐
siNons,	
 you	
 can	
 use	
 2	
 posiNons	
 separated	
 by	
 ‘-‘	
 (like	
 60-125),	
 and	
 potenNally	
 add	
 ‘/’	
 and	
 the	
 interval	
 size.	
 For	

example	
 60-125/3	
 will	
 take	
 posiNons	
 60, 63, 66, 69, 72, …, 120, 123.	
 	
 Charsets	
 can	
 be	
 defined	
 as	

the	
 combinaNon	
 of	
 other	
 charsets	
 (defined	
 higher	
 in	
 the	
 METAPIGA	
 block)	
 or	
 by	
 the	
 combinaNon	
 of	
 charset(s)	

and	
 	
 character	
 list.

13. EXCLUDE 	
 –	
 Sets	
 any	
 number	
 of	
 charsets	
 that	
 will	
 be	
 excluded	
 from	
 the	
 analysis.	
 A	
 charset	
 is	
 defined	
 by	
 2	
 charac-­‐
ter	
 posiNons	
 (like	
 60-125),	
 or	
 can	
 be	
 defined	
 with	
 the	
 CHARSET	
 command.

14. PARTITION 	
 –	
 Divides	
 the	
 data	
 matrix	
 in	
 charsets	
 and	
 compute	
 likelihood	
 separately	
 for	
 each	
 charset.	
 A	
 charset	

is	
 defined	
 by	
 2	
 character	
 posiNons	
 (like	
 60-125),	
 or	
 can	
 be	
 defined	
 with	
 the	
 CHARSET	
 command.

15. STOPAFTER 	
 –	
 Sets	
 the	
 stop	
 criterion	
 of	
 the	
 heurisNc.	
 Any	
 number	
 of	
 condiNons	
 can	
 be	
 set	
 and	
 each	
 one	
 can	
 be	

necessary	
 or	
 sufficient.	
 The	
 heurisNc	
 stops	
 when	
 any	
 of	
 the	
 sufficient	
 condiNons	
 is	
 met	
 or	
 when	
 all	
 necessary	

condiNons	
 are	
 met.	
 CondiNons	
 are	
 sufficient	
 by	
 default	
 and	
 can	
 be	
 switch	
 to	
 necessary	
 using	
 the	
 NECESSARY	

command.	
 If	
 STOP AFTER	
 is	
 not	
 set,	
 the	
 heurisNc	
 will	
 not	
 start	
 but	
 starNng	
 tree(s)	
 will	
 be	
 generated.
• STEPS - Defines	
 a	
 maximum	
 number	
 of	
 generaNons.
• TIME – 	
 Allows	
 to	
 stop	
 the	
 heurisNc	
 aker	
 a	
 given	
 amount	
 of	
 Nme	
 (in	
 hours).
• AUTO – AUTO	
 will	
 stop	
 the	
 heurisNc	
 if	
 the	
 best	
 soluNon	
 evaluaNon	
 doesn’t	
 improve	
 more	
 than	
 a	
 given	
 per-­‐

centage	
 (AUTOTHRESHOLD	
 parameter,	
 set	
 to	
 0.0001	
 by	
 default,	
 i.e.	
 0.01%)	
 at	
 any	
 step	
 during	
 the	
 defined	

number	
 of	
 steps.

• CONSENSUS – CONSENSUS	
 can	
 only	
 be	
 used	
 with	
 Consensus	
 Pruning	
 (metaGA	
 heurisNc),	
 and	
 will	
 stop	
 the	

heurisNc	
 when	
 the	
 mean	
 relaNve	
 error	
 among	
 consensus	
 trees	
 (INTERVAL	
 parameter,	
 set	
 to	
 10	
 by	
 default)	

remains	
 below	
 a	
 given	
 value	
 (set	
 with	
 MRE	
 parameter,	
 0.03	
 by	
 default).	
 Each	
 consensus	
 tree	
 is	
 built	
 using	
 all	

trees	
 from	
 all	
 populaNons	
 in	
 a	
 generaNon.	
 As	
 consensus	
 trees	
 tend	
 not	
 to	
 vary	
 much	
 between	
 2	
 consecuNve	

generaNons,	
 the	
 user	
 is	
 advised	
 to	
 allow	
 several	
 generaNons	
 between	
 sampling	
 (with	
 GENERATION	
 parame-­‐
ter,	
 set	
 to	
 5	
 by	
 default).

• NECESSARY – The	
 following	
 condiNons	
 can	
 be	
 switched	
 to	
 necessary	
 :	
 STEPS,	
 TIME,	
 AUTO,	
 CONSENSUS.
16. REPLICATES	
 –	
 The	
 number	
 of	
 Nmes	
 the	
 metaheurisNc	
 will	
 be	
 repeated	
 with	
 the	
 same	
 dataset.	
 At	
 the	
 end,	
 a	

majority-­‐rule	
 consensus	
 tree	
 is	
 produced.	
 By	
 default,	
 only	
 one	
 tree	
 is	
 produced.
• AUTOSTOP – Adds	
 a	
 stop	
 condiNon	
 to	
 replicates’	
 generaNon.	

§ NONE - By	
 default,	
 there	
 is	
 no	
 stop	
 condiNon,	
 so	
 a	
 given	
 number	
 of	
 replicates	
 is	
 produced.	
 You	
 can	

set	
 the	
 number	
 of	
 replicates	
 produced	
 with	
 RNUM	
 parameter.

§ MRE(error) – This	
 opNon	
 allows	
 MetaPIGA	
 to	
 stop	
 producing	
 replicates	
 when	
 the	
 Mean	
 RelaNve	

Error	
 among	
 consecuNve	
 consensus	
 trees	
 remains	
 below	
 a	
 given	
 value.	
 Error	
 is	
 a	
 value	
 between	

[0,1]	
 set	
 to	
 0.05	
 by	
 default.	

o RMIN – The	
 minimum	
 number	
 of	
 replicates	
 to	
 produce.	
 Default	
 value	
 is	
 100.
o RMAX – The	
 maximum	
 number	
 of	
 replicates	
 to	
 produce.	
 Default	
 value	
 is	
 10	
 000.
o INTERVAL – The	
 number	
 of	
 consecuNve	
 consensus	
 trees	
 (set	
 to	
 10	
 by	
 default)	
 that	
 must	

have	
 a	
 MRE	
 below	
 a	
 given	
 value	
 before	
 stopping	
 the	
 producNon	
 of	
 replicates	
 .
• PARALLEL – The	
 number	
 of	
 replicates	
 to	
 be	
 run	
 in	
 parallel	
 (i.e.,	
 simultaneously).	
 By	
 default,	
 this	
 parameter	

is	
 set	
 to	
 1	
 (no	
 parallel	
 processing).	
 	
 WARNING:	
 It	
 is	
 strongly	
 advised	
 not	
 to	
 use	
 a	
 value	
 greater	
 than	
 the	

number	
 of	
 processors/cores	
 available	
 on	
 the	
 running	
 computer.	
 WARNING2:	
 this	
 parameter	
 must	
 be	
 con-­‐
sidered	
 in	
 combinaNon	
 with	
 the	
 parameter	
 NCORE	
 (i.e.,	
 the	
 number	
 of	
 cores/processors	
 assigned	
 for	
 paral-­‐
lel	
 processing	
 WITHIN	
 a	
 replicate).	
 For	
 example,	
 if	
 you	
 use	
 a	
 computer	
 with	
 4	
 cores,	
 set	
 the	
 NCORE	
 parame-­‐
ter	
 to	
 1	
 and	
 the	
 PARALLEL	
 parameter	
 to	
 4,	
 such	
 that	
 each	
 replicate	
 will	
 use	
 a	
 single	
 core	
 (i.e.,	
 4	
 replicates	

will	
 be	
 run	
 simultaneously).	
 If	
 you	
 use	
 a	
 computer	
 with	
 8	
 cores,	
 you	
 can	
 set	
 the	
 NCORE	
 parameter	
 to	
 2	
 and	

MetaPIGA 3.0 manual p51

http://www.xtremwebch.net
http://www.xtremwebch.net
http://address:8080
http://address:8080

the	
 PARALLEL	
 parameter	
 to	
 4,	
 such	
 that	
 each	
 replicate	
 will	
 use	
 two	
 cores	
 AND	
 4	
 replicates	
 will	
 be	
 run	
 simul-­‐
taneously.

17. LOG	
 –	
 Set	
 the	
 log	
 files	
 you	
 want	
 as	
 output.	
 They	
 can	
 give	
 you	
 valuable	
 informaNon	
 on	
 what	
 happens	
 during	
 the	

execuNon	
 of	
 MetaPIGA.	
 Be	
 aware	
 that	
 selecNng	
 the	
 log	
 files	
 indicated	
 with	
 asterisks	
 can	
 (i)	
 significantly	
 slow	

down	
 the	
 search	
 and	
 (ii)	
 fill	
 up	
 large	
 amount	
 of	
 disk	
 space	
 (with	
 the	
 magnitude	
 of	
 slow-­‐down	
 /	
 fill-­‐up	
 approxi-­‐
mately	
 indicated	
 by	
 the	
 number	
 of	
 asterisks).	
 	
 All	
 log	
 files	
 are	
 wriTen	
 in	
 the	
 results	
 folder.	

• DATA - Working	
 matrix	
 log	
 file	
 -­‐	
 Prints	
 the	
 compressed	
 dataset	
 to	
 'Dataset.log'.	
 The	
 last	
 row	
 contains	
 the	

weight	
 of	
 each	
 column,	
 i.e.,	
 the	
 number	
 of	
 Nmes	
 this	
 data	
 paTern	
 is	
 found	
 in	
 the	
 data	
 matrix.	
 .
• DIST – Distance	
 matrix	
 log	
 file	
 -­‐	
 Prints	
 the	
 distance	
 matrix	
 to	
 'Distances.log'.
• TREESTART – StarNng	
 Trees	
 log	
 file	
 -­‐	
 Prints	
 the	
 starNng	
 tree(s)	
 to	
 'StarUngTrees.tre'.
• HEUR (*) – HeurisNc	
 search	
 log	
 file	
 -­‐	
 The	
 'HeurisUc.log'	
 file	
 records	
 details	
 about	
 each	
 step	
 of	
 the	
 heuris-­‐

Nc	
 used.	
 It	
 requires	
 disk	
 space	
 between	
 500	
 bytes	
 and	
 1	
 Kb	
 per	
 iteraNon	
 of	
 the	
 heurisNc.
• TREEHEUR (**) – HeurisNc	
 search	
 tree	
 file	
 -­‐	
 'The	
 'HeurisUc.tre'	
 file	
 records	
 each	
 tree	
 found	
 at	
 each	
 step	

of	
 the	
 heurisNc.	
 It	
 requires	
 disk	
 space	
 of	
 +/-­‐	
 130	
 bytes	
 per	
 taxa	
 per	
 tree	
 recorded.	
 For	
 example,	
 recording	

trees	
 for	
 a	
 dataset	
 of	
 200	
 taxa,	
 using	
 the	
 metaGA	
 heurisNc	
 with	
 4	
 populaNons	
 of	
 4	
 individuals	
 each,	
 for	
 a	

fixed	
 amount	
 of	
 5000	
 generaNons	
 will	
 generate	
 a	
 file	
 of	
 about	
 1.5Gb	
 for	
 each	
 replicate	
 produced.

• CONSENSUS (**) –Consensus	
 log	
 file	
 -­‐	
 The	
 ‘Consensus.log'	
 file	
 records	
 consensus	
 at	
 each	
 step	
 of	
 Consen-­‐
sus	
 Pruning.	
 It	
 requires	
 disk	
 space	
 between	
 100	
 bytes	
 and	
 1Kb	
 per	
 taxa	
 and	
 per	
 consensus	
 recorded.	
 For	

example,	
 recording	
 consensus	
 for	
 a	
 dataset	
 of	
 200	
 taxa,	
 using	
 the	
 metaGA	
 heurisNc	
 for	
 a	
 fixed	
 number	
 of	

5000	
 generaNons	
 will	
 generate	
 a	
 file	
 between	
 100Mb	
 and	
 1Gb	
 for	
 each	
 replicate	
 produced..

• OPDETAILS (***) - Operators	
 log	
 file	
 -­‐	
 The	
 'OperatorsDetails.log'	
 file	
 records	
 details	
 about	
 the	
 opera-­‐
tors	
 used.	
 It	
 requires	
 disk	
 space	
 of	
 200-­‐300	
 bytes	
 per	
 taxa	
 per	
 operaNon.	
 For	
 example,	
 recording	
 operator	

details	
 for	
 a	
 dataset	
 of	
 200	
 taxa,	
 using	
 the	
 metaGA	
 heurisNc	
 with	
 4	
 populaNons	
 of	
 4	
 individuals	
 each,	
 for	
 a	

fixed	
 number	
 of	
 5000	
 generaNons	
 will	
 generate	
 a	
 file	
 between	
 1.7Gb	
 and	
 3.4Gb	
 for	
 each	
 replicate	
 pro-­‐
duced.

• OPSTATS –	
 Operator	
 staNsNcs	
 file	
 –	
 The	
 ‘OperatorsStaNsNcs.log’	
 file	
 records	
 operator	
 staNsNcs	
 at	
 the	
 end	

of	
 a	
 search,	
 as	
 well	
 as	
 each	
 Nme	
 the	
 operator	
 frequencies	
 have	
 been	
 updated.

• ANCSEQ (*) - Ancestral	
 sequences	
 log	
 file	
 -­‐	
 At	
 the	
 end	
 of	
 the	
 heurisNc,	
 the	
 ancestral	
 sequence	
 probabili-­‐
Nes	
 of	
 each	
 internal	
 node	
 are	
 printed	
 into	
 the	
 'AncestralSequences.log'	
 file.

• PERF (*) – The	
 ‘Performances.log’	
 file	
 records	
 the	
 amount	
 of	
 Nme	
 (in	
 nanoseconds)	
 used	
 by	
 each	
 op-­‐
erator.	
 It	
 requires	
 disk	
 space	
 of	
 +/-­‐	
 1	
 Kb	
 per	
 iteraNon	
 of	
 the	
 heurisNc.

MetaPIGA 3.0 manual p52

8.	
 	
 	
 Appendix	
 2:	
 Using	
 the	
 Stochastic	
 Simulated	
 Annealing	
 (SSA)

Select the ‘Simulated Annealing’ radio button in the ‘Heuristic’ window to see all available parame-
ters (Fig. 31). We implemented 14 highly-parametrized cooling schedules in MetaPIGA, including
the ‘Lundy’ cooling schedule [26, 43]. The user can control all cooling schedule parameters: the
starting temperature computation method, the maximum acceptance probability, the temperature
decrease frequency, and the possibility of ‘reheating’. Changing the cooling schedule in the ‘Heu-
ristic’ window will change the set of available parameters. Note that several of these cooling sched-
ules are quite similar to each others such that we might reduce the number of available schedules in
future versions of MetaPIGA.

Fig. 31: The ‘Heuristic’ window with ‘Simulated annealing’ selected and the ‘Lundy schedule’ settings.

In each of the 14 available cooling schedules, Ti is the temperature after i decrements, and Γ is the
maximum number of temperature decrements before reinitialization to T0 (the starting temperature).
Except for the ‘Lundy schedule’, T0 (and TΓ when relevant) is computed as follows:

T0 =
−ΔL
lnA0

 	

 	

 and 	

 	

 TΓ =
−ΔL
lnAΓ

	

 	

 	

 	

where ΔL is the upper limit of likelihood change, whereas A0 and AΓ are, respectively, the initial
and final ‘maximal acceptance parameter’, i.e., the maximal probability to accept a tree with a
worse likelihood. Hence, A0 and AΓ define the initial and final temperature values, and the cooling
schedule defines how the temperature is decreased between these two values. The various cooling
schedules (and corresponding curve equations of temperature change) are listed below, with A0 and
AΓ defined by the user. The cooling schedule requires defining the number of iterations (i.e., the
number of times operators have been used to generate a change in the tree) after which a tempera-
ture decrement is performed. The user can choose either (i) the number of iterations (steps) or (ii)
the number of successes (generating better trees) or failures (not generating better trees) required
before a temperature decrement is performed. As decreasing the temperature translates into reject-
ing more easily trees with lower likelihoods, a reheating parameter allows defining when the tem-

MetaPIGA 3.0 manual p53

perature is reinitialized to T0 to facilitate crossing of valleys in likelihood space. Finally, the method
for defining ΔL (required for computing the initial and final temperatures) is also chosen by the user
either as the percentage of the Likelihood of the Neighbor-Joining tree or as an estimate generated
by burn-in. In the latter case, each mutation operator is applied 20 times on the starting tree and the
maximum difference of likelihood observed is used as ΔL. The table below shows the cooling
schedules implemented in metaPIGA.

Cooling	
 schedule Corresponding	
 curve	
 equa4on curve

	
 Lundy	

	
 (with	
 c	
 and	
 α	
 as	

user-­‐defined	
 pa-­‐
rameters)

Ti+1 =
ΔL
1+ iβ

	
 	

 with	
 β =
c

(1−α)n +α
− ln NJT

m

β	
 is	
 the	
 cooling	
 rate	
 (its	
 value	
 is	
 <	
 1)	
 and	
 is	
 computed	
 using	
 parameters	

from	
 the	
 dataset:	
 n is the number of sequences, m is the number of
aligned columns, c and α have values between 0 and 1, and lnNJT
is the log likelihood of the neighbour-joining tree.

	
 Ra4o-­‐Percent	

	
 (with	
 parameter	
)
Ti+1 = δTi 	

 with δ<1

	
 Fast	
 Cauchy Ti =
T0
i
	
 	
 	
 	

	
 Boltzmann 	
 Ti =
T0
ln i

	
 Geometric	

	
 (with	
 parameter	
)
Ti = T0α

i 	

 with α<1

	
 Linear 	
 	
 Ti = T0 − i
(T0 − TΓ)

Γ

	
 Triangular 	
 Ti = T0
T0
TΓ

⎛
⎝⎜

⎞
⎠⎟

i /Γ

	
 Polynomial Ti =
(T0 − TΓ)(Γ +1)

Γ(i +1)
+ T0 −

(T0 − TΓ)(Γ +1)
Γ

MetaPIGA 3.0 manual p54

	
 Transcendental	

	
 -­‐	
 exponen4al Ti = TΓ +

(T0 − TΓ)
1+ e3(i−

Γ
2)

	
 Transcendental
	
 -­‐	
 logarithmic 	
 Ti = T0e

−
i
Γ

⎛
⎝⎜

⎞
⎠⎟
2
ln
T0
TΓ

	
 Transcendental
	
 -­‐	
 periodic Ti =

(T0 − TΓ)
2

1+ cos iΠ
Γ

⎛
⎝⎜

⎞
⎠⎟
+ TΓ

	
 Transcendental
	
 -­‐	
 smoothed	
 peri-­‐
odic

	
 Ti =
(T0 − TΓ)

4
2 + cos8iΠ

Γ
⎛
⎝⎜

⎞
⎠⎟
e
−
i
2Γ

	
 Hyperbolic
	
 -­‐	
 tangent Ti =

(T0 − TΓ)
2

1− tanh(10i
Γ

− 5)⎛
⎝⎜

⎞
⎠⎟
+ TΓ

	
 Hyperbolic
	
 -­‐	
 cosinus

Ti =
(T0 − TΓ)
cosh 10iΓ

+ TΓ

MetaPIGA 3.0 manual p55

9.	
 	
 	
 Appendix	
 3:	
 A	
 simple	
 introduction	
 to	
 ML	
 phylogeny	
 inference

9.1. Introduction

	

 The Maximum Likelihood approach to phylogeny inference is based on the use of a substitu-
tion model that allows computing the likelihood of a tree, i.e., the probability that its topology and
branch lengths (given the model parameters, such as instantaneous substitution rates, state frequen-
cies, gamma distribution of rates, etc) yielded the observed data. Substitution models used in the
field of phylogeny inference are Markovian: the conditional probability distribution of future states
depends only upon the present state, i.e., the probability of change of a character from state i to state
j does not depend on the history of the character before state i. We also assume that the Markov
process is homogeneous (i.e., the instantaneous substitution probabilities are identical everywhere
in the tree) and time-reversible (the substitution rate i → j is identical to the substitution rate j → i).
Given time reversibility, the likelihood of a tree does not depend on where that tree is rooted. In
other words, trees are unrooted and the choice of outgroup taxa (orienting the tree in time) is an as-
sumption performed by the user. Finally, we assume that different characters (i.e., different posi-
tions in the multiple alignment) evolve independently, such that the likelihood of every character
can be computed separately.

9.2. The General-Time-Reversible (GTR) Model

	

 The easiest way to represent a model is by using a matrix Q in which each element Qij is the
instantaneous substitution rate from state i to state j. We use here the example of a 4x4 matrix for
nucleotide substitutions, but the concept is the same for amino-acid substitutions or codon substitu-
tions (but the corresponding matrices are then 20x20 and 64x64, respectively).

Q =

−(µaπC + µbπG + µcπT) µaπC µbπG µcπT

µgπ A −(µgπ A + µdπG + µeπT) µdπG µeπT

µhπ A µiπC −(µhπ A + µiπC + µ fπT) µ fπT

µ jπ A µkπC µlπG −(µ jπ A + µkπC + µlπG)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

where πi is the equilibrium frequency of state i, and μ is the mean instantaneous substitution rate.
The latter is modified with relative rate parameters a, b, ..., l specific to each possible substitution.
However, as indicated above, we use time-reversible models, such that a=g, b=h, c=j, d=i, e=k, and
f=l. The diagonal elements of the matrix make the sum of each line equal to zero.

The instantaneous substitution rate matrix Q can be decomposed into a rate matrix R and an equilib-
rium frequency matrix Π:

Q = R X Π	

	

 	

 	

 	

 	

 	

 Equation 2

where

MetaPIGA 3.0 manual p56

R =

− µa µb µc
µa − µd µe
µb µd − µ f
µc µe µ f −

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

	

 	

 	

 	

 Equation 3

and

Π =

π A 0 0 0
0 πC 0 0
0 0 πG 0
0 0 0 πT

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	

 	

 	

 	

 Equation 4

The mean instantaneous substitution rate can be computed as follows:

µ =
1

π i ′Qiji≠ j

A,C ,T ,G∑
	

 	

 	

 	

 	

 Equation 5

where

′Q =

− aπC bπG cπT

aπ A − dπG eπT

bπ A dπC − fπT

cπ A eπC fπG −

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	

 	

 	

 Equation 6

9.3. Computing the likelihood of a tree

	

 The principle for estimating the likelihood of a tree is based on computing the probability of a
substitution from state i to state j (with i and j possibly identical) given the length vx of the branch x.
Given that a nucleotide in a sequence can experience multiple substitutions through time, the prob-
ability of observing a substitution between two nodes is not a linear function of the branch length vx
but takes the form:

p(t) = e−λt 	

 	

 	

 	

 	

 	

 Equation 7

where λ and t are the substitution rate and the time, respectively. Note that it is not possible to sepa-
rate λ and t because a branch can be long due to a long time and/or a large rate. In other words, the
branch length is λt.

When considering the GTR model, the equation takes the form

p(t) = eQt 	

 	

 	

 	

 	

 	

 Equation 8

MetaPIGA 3.0 manual p57

Where Q is the instantaneous substitution matrix (equation 1). The equation can be computed by
using the eigenvectors and eigenvalues of the matrix.
Partitions are incorporated in the computation by multiplying t (in Equation 8) by Θp, i.e., the rela-
tive rate of partition p. Relative rates of partitions are optimized separately but each partition is
weighted according to its size (S(p)), and the weighted average of among-partitions rates is con-
strained to 1, i.e.,

	

 S(p).Θ p
p

nPar

∑ = 1 	

 	

 	

 	

 	

 Equation 9

Let’s take a simple example. If the observed sequence data, and the tree to evaluate, are respec-
tively:

Taxon_1 ACCGTCATCAGG
Taxon_2 GCTATCGCCAGC
Taxon_3 ACCGTTATCAGG
Taxon_4 GCTGTCGTCAGG

v1 v2

v3 v4
v5

T2
T1

T3
T4

y x

Friday, April 23, 2010

the likelihood of that tree is the probability to generate the observed data given the substitution
model. The process is performed separately for each position (each column in the alignment). Let’s
consider the first position (underlined in the sequence alignment above). The states at the internal
nodes X and Y are unknown. Imagine that both X and Y were of state A. Given that Taxa 1 and 3 ex-
hibit a A, and that Taxa 2 and 4 exhibit a G, the full probability of observing the first position given
the tree is the Probability to:

observe no change between Y(=A) and Taxon_1(=A) given branch length v1
AND	

 	

 observe no change between Y(=A) and Taxon_3(=A) given branch length v3
AND	

 	

 observe a change from X(=A) to Taxon_2(=G) given branch length v2
AND	

 	

 observe a change from X(=A) to Taxon_4(=G) given branch length v4
AND	

 	

 observe no change from X(=A) to Y(=A) given branch length v5

In probabilistic terms, the full probability of observing states A, G, A, and G for, respectively, the
sequences 1, 2, 3, and 4, GIVEN that the internal nodes X and Y exhibit the state A is:

h(A,G,A,G⎮X=A,Y=A) = PAA(v1) . PAA(v3) . PAG(v2) . PAG(V4) . PAA(V5)	

 	

 Equation 10

However, we don’t know the unobserved states of the internal nodes, such that the combination
considered above (X=Y=A) is only one possibility. Hence, we have to consider each possible com-
bination of states. In the simple tree above, there are only 2 internal nodes and 16 possibilities:

X=A and Y=A	

 combination 1
X=A and Y=G	

 combination 2
X=A and Y=C	

 combination 3
...
X=T and Y=T	

 combination 16

MetaPIGA 3.0 manual p58

Hence, the full probability of generating the first position in the alignment above (i.e., states A, G,
A, and G for, respectively, the sequences 1, 2, 3, and 4) is the sum of the probabilities of combina-
tions 1 to 16. In other words, the real (unobserved) states of the internal nodes corresponded to
combination 1 or combination 2 or combination 16. In probabilistic terms, we therefore need to
compute:

Prob(combination 1) + Prob(combination 2) + ... + Prob(combination 16)	

 	

 Equation 11

	

 where “Prob(combination 1)” is equation 10.

To generalize, the likelihood of observing the first position of the alignment above given the follow-
ing tree

seq1 ACCGTCATCAGG
seq2 GCTATCGCCAGC
seq3 ACCGTTATCAGG
seq4 GCTGTCGTCAGG

v1 v2

v3 v4
v5

T2
(G)

T1
(A)

T3
(A) T4

(G)

y x

h(A,G,A,G) = gxPxG(v 4)PxG(v 2) Pxy(v 5)PyA(v1)PyA(v 3)
y
!

x
!

P(t) = e
Rt

is (equation 12):

seq1 ACCGTCATCAGG
seq2 GCTATCGCCAGC
seq3 ACCGTTATCAGG
seq4 GCTGTCGTCAGG

v1 v2

v3 v4
v5

T2
(G)

T1
(A)

T3
(A) T4

(G)

y x

h(A,G,A,G) = gxPxG(v 4)PxG(v 2) Pxy(v 5)PyA(v1)PyA(v 3)
y
!

x
!

P(t) = e
Rt

Note the parameter gx in equation 12, which is the equilibrium frequency of state x.

Finally, the likelihood of the tree given the full alignment is

L = Li
i
∏ 	

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 Equation 13

	

 where Li is the likelihood of position i.

To avoid the manipulation of exceedingly small values, it is much more convenient to compute the
log likelihood of a tree as follows:

lnL = lnLi
i
∑ 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 Equation 14

 Much additional information can be found in the references given in the ‘Background’ Section
(Section 2) of this manual.

MetaPIGA 3.0 manual p59

10.	
 Bibliography

1. Lemmon AR, Milinkovitch MC: The metapopulation genetic algorithm: An efficient solution for the problem of large
phylogeny estimation. Proc Natl Acad Sci U S A 2002, 99:10516-10521.

2. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T: trimAl: a tool for automated alignment trimming in large-scale
phylogenetic analyses. Bioinformatics 2009, 25:1972-1973.

3. Li W-H: Molecular evolution. Sunderland, MA.: Sinauer; 1997.
4. Gabaldon T: Large-scale assignment of orthology: back to phylogenetics? Genome Biol 2008, 9:235.
5. Tzika A, Helaers R, Van de Peer Y, Milinkovitch MC: MANTiS: a phylogenetic framework for multi-species genome

comparisons. Bioinformatics 2008, 24:151-157.
6. Milinkovitch MC, Helaers R, Depiereux E, Tzika AC, Gabaldon T: 2X genomes - depth does matter. Genome Biol 2010,

11:R16.
7. Thorne JL, Kishino H: Divergence time and evolutionary rate estimation with multilocus data. Syst Biol 2002,

51:689-702.
8. Thorne JL, Kishino H, Painter IS: Estimating the rate of evolution of the rate of molecular evolution. Molecular Biol-

ogy and Evolution 1998, 15:1647-1657.
9. Cassens I, Vicario S, Waddell VG, Balchowsky H, Van Belle D, Ding W, Fan C, Mohan RS, Simoes-Lopes PC, Bastida R,

et al: Independent adaptation to riverine habitats allowed survival of ancient cetacean lineages. Proc Natl Acad Sci U
S A 2000, 97:11343-11347.

10. Chang BS, Jonsson K, Kazmi MA, Donoghue MJ, Sakmar TP: Recreating a functional ancestral archosaur visual pig-
ment. Mol Biol Evol 2002, 19:1483-1489.

11. Chang BS, Kazmi MA, Sakmar TP: Synthetic gene technology: applications to ancestral gene reconstruction and
structure-function studies of receptors. Methods Enzymol 2002, 343:274-294.

12. Chang BS, Ugalde JA, Matz MV: Applications of ancestral protein reconstruction in understanding protein function:
GFP-like proteins. Methods Enzymol 2005, 395:652-670.

13. Blanchette M, Green ED, Miller W, Haussler D: Reconstructing large regions of an ancestral mammalian genome in
silico. Genome Res 2004, 14:2412-2423.

14. Williams PD, Pollock DD, Blackburne BP, Goldstein RA: Assessing the accuracy of ancestral protein reconstruction
methods. PLoS Comput Biol 2006, 2:e69.

15. Zhang J, Nielsen R, Yang Z: Evaluation of an improved branch-site likelihood method for detecting positive selection
at the molecular level. Mol Biol Evol 2005, 22:2472-2479.

16. Meegaskumbura M, Bossuyt F, Pethiyagoda R, Manamendra-Arachchi K, Bahir M, Milinkovitch MC, Schneider CJ: Sri
Lanka: an amphibian hot spot. Science 2002, 298:379.

17. Springer MS, Stanhope MJ, Madsen O, de Jong WW: Molecules consolidate the placental mammal tree. Trends Ecol
Evol 2004, 19:430-438.

18. Bossuyt F, Brown RM, Hillis DM, Cannatella DC, Milinkovitch MC: Phylogeny and biogeography of a cosmopolitan
frog radiation: Late cretaceous diversification resulted in continent-scale endemism in the family ranidae. Syst Biol
2006, 55:579-594.

19. Graham RL, Foulds LR: Unlikelihood that Minimal Phylogenies for a Realistic Biological Study Can Be Constructed
in Reasonable Computational Time. Math Bioscience 1982, 60:133-142.

20. Chor B, Tuller T: Maximum likelihood of evolutionary trees: hardness and approximation. Bioinformatics 2005, 21
Suppl 1:i97-106.

21. Felsenstein J: Inferring Phylogenies. Sunderland: Sinauer Associates Inc.; 2004.
22. Felsenstein J: Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolu-

tion 1981, 17:368-376.
23. Swofford DL, Waddell PJ, Huelsenbeck JP, Foster PG, Lewis PO, Rogers JS: Bias in phylogenetic estimation and its

relevance to the choice between parsimony and likelihood methods. Syst Biol 2001, 50:525-539.
24. Huelsenbeck JP, Larget B, Miller RE, Ronquist F: Potential applications and pitfalls of Bayesian inference of phy-

logeny. Syst Biol 2002, 51:673-688.
25. Holder M, Lewis PO: Phylogeny estimation: traditional and Bayesian approaches. Nat Rev Genet 2003, 4:275-284.
26. Salter LA, Pearl DK: Stochastic search strategy for estimation of maximum likelihood phylogenetic trees. Syst Biol

2001, 50:7-17.
27. Matsuda H: Protein phylogenetic inference using maximum likelihood with a genetic algorithm. In Pacific symposium

on biocomputing '96; London. Edited by Hunter L, Klein TE. World Scientific; 1996: 512-523.
28. Katoh K, Kuma K, Miyata T: Genetic algorithm-based maximum-likelihood analysis for molecular phylogeny. J Mol

Evol 2001, 53:477-484.
29. Lewis PO: A genetic algorithm for maximum-likelihood phylogeny inference using nucleotide sequence data. Mol

biol evol 1998, 15:277-283.
30. Zwickl DJ: Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under

the maximum likelihood criterion. The University of Texas, 2006.
31. Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003,

19:1572-1574.
32. Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed

models. Bioinformatics 2006, 22:2688-2690.
33. Suchard MA, Rambaut A: Many-core algorithms for statistical phylogenetics. Bioinformatics 2009, 25:1370-1376.
34. Tavaré S: Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences. American Mathematical

Society: Lectures on Mathematics in the Life Sciences 1986, 17:57–86.
35. Yang Z: Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approxi-

mate methods. J Mol Evol 1994, 39:306-314.

MetaPIGA 3.0 manual p60

36. Yang Z: Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolution 1996,
11:367-372.

37. Gu X, Fu YX, Li WH: Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide
sites. Mol biol evol 1995, 12:546-557.

38. Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.
Syst Biol 2003, 52:696-704.

39. Stamatakis A, Ludwig T, Meier H: RAxML-III: a fast program for maximum likelihood-based inference of large phy-
logenetic trees. Bioinformatics 2005, 21:456-463.

40. Maddison DR, Swofford DL, Maddison WP: NEXUS: an extensible file format for systematic information. Syst Biol
1997, 46:590-621.

41. Posada D, Crandall KA: Selecting the best-fit model of nucleotide substitution. Syst Biol 2001, 50:580-601.
42. Kirkpatrick S, Gelatt CD, Jr., Vecchi MP: Optimization by Simulated Annealing. Science 1983, 220:671-680.
43. Lundy M: Applications of the Annealing Algorithm to Combinatorial Problems in Statistics. Biometrika 1985,

72:191-198.
44. Holland J: Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press; 1975.
45. Goldman N, Yang Z: A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol

Evol 1994, 11:725-736.
46. Kosiol C, Holmes I, Goldman N: An empirical codon model for protein sequence evolution. Mol biol evol 2007,

24:1464-1479.
47. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biol-

ogy and Evolution 1987, 4:406-425.
48. Criscuolo A, Michel CJ: Phylogenetic inference with weighted codon evolutionary distances. J Mol Evol 2009,

68:377-392.
49. Huelsenbeck JP, Bollback JP: Empirical and hierarchical Bayesian estimation of ancestral states. Syst Biol 2001,

50:351-366.

MetaPIGA 3.0 manual p61

